The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181066 Expansion of g.f.: exp( Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^3 *x^k ] *x^n/n ). 3
1, 1, 2, 7, 31, 157, 865, 5051, 30774, 193669, 1250319, 8240232, 55239187, 375624781, 2585449450, 17982937876, 126222946496, 893073250063, 6363674671524, 45631735776036, 329065051395940, 2385126419825231 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Compare g.f. to a g.f. of the Catalan numbers (A000108):
. exp( Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^2 *x^k ] *x^n/n ).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 157*x^5 + 865*x^6 +...
The logarithm begins:
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 95*x^4/4 + 606*x^5/5 + 4032*x^6/6 +...+ A181067(n)*x^n/n +...
which equals the series:
log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 +...)*x
+ (1 + 2^3*x + 3^3*x^2 + 4^3*x^3 + 5^3*x^4 + 6^3*x^5 + ...)*x^2/2
+ (1 + 3^3*x + 6^3*x^2 + 10^3*x^3 + 15^3*x^4 + 21^3*x^5 + ...)*x^3/3
+ (1 + 4^3*x + 10^3*x^2 + 20^3*x^3 + 35^3*x^4 + 56^3*x^5 + ...)*x^4/4
+ (1 + 5^3*x + 15^3*x^2 + 35^3*x^3 + 70^3*x^4 + 126^3*x^5 + ...)*x^5/5
+ (1 + 6^3*x + 21^3*x^2 + 56^3*x^3 + 126^3*x^4 + 252^3*x^5 + ...)*x^6/6
+ (1 + 7^3*x + 28^3*x^2 + 84^3*x^3 + 210^3*x^4 + 462^3*x^5 + ...)*x^7/7 + ...
MATHEMATICA
With[{m=30}, CoefficientList[Series[Exp[Sum[Sum[Binomial[n+k-1, k]^3*x^k*x^n/n, {k, 0, m+2}], {n, m+1}]], {x, 0, m}], x]] (* G. C. Greubel, Apr 05 2021 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^3*x^k)*x^m/m)+x*O(x^n)), n)}
(Magma)
m:=30;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( Exp( (&+[ (&+[ Binomial(n+k-1, k)^3*x^(n+k)/n : k in [0..m+2]]): n in [1..m+1]]) ) )); // G. C. Greubel, Apr 05 2021
(Sage)
m=30;
def A181066_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( exp( sum( sum( binomial(n+k-1, k)^3*x^(n+k)/n for k in (0..m+2) ) for n in (1..m+1)) ) ).list()
A181066_list(m) # G. C. Greubel, Apr 05 2021
CROSSREFS
Cf. A000108, A181067 (log), A181068 (variant).
Sequence in context: A030823 A030873 A030913 * A325452 A030945 A088554
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 02:16 EDT 2024. Contains 373492 sequences. (Running on oeis4.)