login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180484
Numbers n such that r*(n/k)^2 is an integer, where n=(x_1 x_2 ... x_r) with x_i the decimal digits of n and k = x_1 * x_2 * ... * x_r.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 36, 111, 112, 115, 128, 132, 135, 144, 175, 212, 216, 224, 312, 315, 384, 432, 612, 624, 672, 735, 816, 1111, 1112, 1113, 1114, 1115, 1116, 1121, 1122, 1124, 1125, 1127, 1128, 1131, 1134, 1144, 1161, 1164, 1176, 1184
OFFSET
1,2
COMMENTS
A007602 is a subsequence, with 1114 the first nonmember of A007602. - D. S. McNeil, Sep 09 2010
EXAMPLE
n=36, r=2, 2*(36/3*6)^2=8, n=36 belongs to the sequence.
MAPLE
A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
A007954 := proc(n) mul(d, d= convert(n, base, 10)) : end proc:
isA180484 := proc(n) r := A055642(n) ; k := A007954(n) ; if k <> 0 then type(r*n^2/k^2, 'integer') ; else false; end if; end proc:
for n from 1 to 2200 do if isA180484(n) then printf("%d, ", n) ; end if; end do:
# R. J. Mathar, Sep 08 2010
PROG
(Python)
from gmpy2 import t_mod, mpz
from operator import mul
from functools import reduce
A180484 = [int(mpz(n)) for n in (str(x) for x in range(1, 10**9)) if not
(n.count('0') or t_mod(mpz(n)**2*len(n),
reduce(mul, (mpz(d) for d in n))**2))]
# Chai Wah Wu, Aug 26 2014
(PARI) is(n)=my(d=digits(n), r=#d, k=vecprod(d)); k && denominator((n/k)^2*r)==1 \\ Charles R Greathouse IV, Jun 03 2020
CROSSREFS
Subsequence of A052382. A007602 is a subsequence.
Sequence in context: A182183 A308472 A064700 * A007602 A343681 A337941
KEYWORD
base,easy,nonn
AUTHOR
Ctibor O. Zizka, Sep 07 2010
EXTENSIONS
More terms from R. J. Mathar and D. S. McNeil, Sep 08 2010
Updated an A-number in a comment R. J. Mathar, Oct 18 2010
STATUS
approved