The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180246 Triangle T(n,k) read by rows: T(n,k) = Sum_{j=0..k} (-1)^j *binomial(n+1,j)*(k+2-j)^n, 0 <= k < n. 1
 2, 4, -3, 8, -5, 4, 16, 1, 11, -5, 32, 51, 46, -14, 6, 64, 281, 337, 22, 22, -7, 128, 1163, 2472, 1121, 176, -27, 8, 256, 4257, 15703, 15493, 4419, 163, 37, -9, 512, 14563, 88354, 155980, 88486, 14398, 622, -44, 10, 1024, 47785, 455357, 1310024, 1310816, 454730, 48170, 848, 56, -11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums are apparently the 2nd column of A156984, 2, 1, 7, 23,... Generalizes A008292 in the sense that a term "2" is added to the factor that is raised to the n-th power in the sum of the definition. A term "1" would generate A008292, too (up to index shifts). REFERENCES B. Harris and C J. Park, A generalization of Eulerian numbers with a probabilistic Application, Statistics and Probability Letters 20 (1994), page 40 LINKS G. C. Greubel, Rows n=1..100 of triangle, flattened FORMULA T(n,k) = Sum_{j=0..k} (-1)^j *binomial(n+1,j)*(k+2-j)^n, for k=0..n-1. EXAMPLE Triangle begins with:      2;      4,    -3;      8,    -5,      4;     16,     1,     11,      -5;     32,    51,     46,     -14,       6;     64,   281,    337,      22,      22,     -7;    128,  1163,   2472,    1121,     176,    -27,     8;    256,  4257,  15703,   15493,    4419,    163,    37,  -9;    512, 14563,  88354,  155980,   88486,  14398,   622, -44, 10;   1024, 47785, 455357, 1310024, 1310816, 454730, 48170, 848, 56, -11;   ... MAPLE A180246 := proc(n, k) add( (-1)^v*binomial(n+1, v)*(k+2-v)^n, v=0..k) ; end proc: # R. J. Mathar, Jan 29 2011 P := proc(n, x) option remember; if n = 0 then 1 else   (n*x+2*(1-x))*P(n-1, x)+x*(1-x)*diff(P(n-1, x), x);   expand(%) fi end: A180246 := (n, k) -> coeff(P(n, x), x, k): seq(print(seq(A180246(n, k), k=0..n-1)), n=0..10);  # Peter Luschny, Mar 07 2014 MATHEMATICA t[n_, j_, d_]:= Sum[(-1)^v *Binomial[n+1, v](j+d-v)^n, {v, 0, j}]; Table[Flatten[Table[Table[t[n, k, m], {k, 0, n-1}], {n, 1, 10}]], {m, 0, 10}] (* This sequence corresponds to m=2 *) Table[Sum[(-1)^j*Binomial[n+1, j]*(k-j+2)^n, {j, 0, k}], {n, 1, 12}, {k, 0, n-1}]//Flatten PROG (PARI) {T(n, k) = sum(j=0, k, (-1)^j*binomial(n+1, j)*(k-j+2)^n)}; for(n=1, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 23 2019 (MAGMA) [[(&+[(-1)^j*Binomial(n+1, j)*(k-j+2)^n: j in [0..k]]): k in [0..n-1]]: n in [1..12]]; // G. C. Greubel, Feb 23 2019 (Sage) [[sum((-1)^j*binomial(n+1, j)*(k-j+2)^n for j in (0..k)) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Feb 23 2019 (GAP) Flat(List([1..12], n-> List([0..n-1], k-> Sum([0..k], j-> (-1)^j*Binomial(n+1, j)*(k-j+2)^n )))); # G. C. Greubel, Feb 23 2019 CROSSREFS Cf. A008292, A157011. Sequence in context: A288966 A057495 A321366 * A329146 A246367 A048167 Adjacent sequences:  A180243 A180244 A180245 * A180247 A180248 A180249 KEYWORD sign,tabl,easy AUTHOR Roger L. Bagula, Aug 19 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 14:47 EDT 2021. Contains 343860 sequences. (Running on oeis4.)