login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156984
Triangle T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!, read by rows.
2
1, 0, 2, 1, 1, 6, 2, 7, 8, 20, 9, 23, 47, 45, 70, 44, 121, 214, 281, 224, 252, 265, 719, 1312, 1602, 1554, 1050, 924, 1854, 5041, 9148, 11334, 10548, 8142, 4752, 3432, 14833, 40319, 73229, 90507, 84879, 63849, 41019, 21021, 12870, 133496, 362881, 659006, 814783, 763196, 576643, 364166, 200629, 91520, 48620
OFFSET
0,3
COMMENTS
Row sums are: {1, 2, 8, 37, 194, 1136, 7426, 54251, 442526, 4014940, ...}.
The first column gives the subfactorials, or rencontres, numbers A000166. See Riordan's p_n(k) equation 17 for further reference.
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 57-65
FORMULA
T(n, k) = n!*Sum_{j=k..n} (-1)^(j+k)*binomial(k+j, j)/j!.
EXAMPLE
Triangle begins as:
1;
0, 2;
1, 1, 6;
2, 7, 8, 20;
9, 23, 47, 45, 70;
44, 121, 214, 281, 224, 252;
265, 719, 1312, 1602, 1554, 1050, 924;
1854, 5041, 9148, 11334, 10548, 8142, 4752, 3432;
14833, 40319, 73229, 90507, 84879, 63849, 41019, 21021, 12870;
133496, 362881, 659006, 814783, 763196, 576643, 364166, 200629, 91520, 48620;
MAPLE
A156984:= (n, k) -> add( (-1)^(j+k)*binomial(k+j, j)*(n!/j!), j=k..n );
seq(seq(A156984(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 09 2021
MATHEMATICA
Table[n!*Sum[(-1)^(j-k)*Binomial[k+j, j]/j!, {j, k, n}], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Sage) flatten([[sum( (-1)^(j+k)*binomial(n, j)*binomial(k+j, j)*factorial(n-j) for j in (k..n) ) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
(Magma) [(&+[ (-1)^(j+k)*Binomial(n, j)*Binomial(k+j, j)*Factorial(n-j): j in [k..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
CROSSREFS
Cf. A000166.
Sequence in context: A085826 A112477 A372973 * A181621 A307070 A084268
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 20 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 09 2021
STATUS
approved