|
|
A180156
|
|
Sequence from adding the twin primes and dividing by the digit sum of twin primes.
|
|
0
|
|
|
1, 1, 4, 2, 4, 7, 6, 8, 34, 12, 12, 14, 13, 16, 11, 19, 23, 20, 24, 52, 23, 40, 48, 39, 58, 35, 40, 41, 54, 40, 60, 69, 46, 41, 49, 136, 172, 100, 118, 91, 128, 117, 71, 78, 217, 126, 95, 121, 99, 71, 107, 120, 79, 71, 144, 75, 104, 78, 129, 100, 74, 169, 174, 116, 352, 203, 238
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
If necessary the result is rounded to the nearest integer.
|
|
LINKS
|
|
|
EXAMPLE
|
(59 + 61) / (5+9+6+1) = 120/21 = 5.7 = 6 (rounded to the nearest integer)
107 and 109 are twin primes.
Hence (107 + 109) / (1+0+7+1+0+9) = 216/18 = 12
|
|
MATHEMATICA
|
Floor[1/2+Total[#]/Total[Flatten[IntegerDigits/@#]]]&/@ Select[Partition[Prime[Range[500]], 2, 1], Last[#]-First[#]==2&] (* Harvey P. Dale, Mar 23 2011 *)
f[n_] := Round[2 (n + 1)/(Plus @@ IntegerDigits[n] + Plus @@ IntegerDigits[n + 2])]; f@# & /@ Select[ Prime@ Range@ 1000, PrimeQ[# + 2] &] (* Robert G. Wilson v, Aug 16 2011 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,nonn,less
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Harvey P. Dale, Mar 23 2011.
|
|
STATUS
|
approved
|
|
|
|