login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091007 Decimal expansion of Sum_{n>=1} arccot(n^2). 1
1, 4, 2, 4, 7, 4, 1, 7, 7, 8, 4, 2, 9, 9, 8, 0, 8, 8, 9, 7, 6, 1, 5, 4, 7, 8, 0, 6, 8, 8, 9, 2, 3, 4, 1, 5, 2, 8, 0, 2, 0, 6, 6, 3, 3, 4, 6, 0, 1, 8, 1, 8, 0, 4, 0, 6, 5, 7, 2, 4, 5, 7, 7, 3, 1, 3, 7, 1, 1, 3, 8, 6, 3, 0, 2, 1, 0, 3, 1, 9, 6, 5, 8, 1, 5, 4, 9, 9, 2, 0, 8, 4, 9, 8, 5, 1, 7, 6, 6, 3, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Wilf's constant. - Artur Jasinski, Sep 25 2008

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

G. Boros, V. Moll, Sums of arctangents and some formulas of Ramanujan, Sci. Ser. A Math. Sci 11 (2005) 13-24 MR2196063 eq. (1.3).

Eric Weisstein's World of Mathematics, Inverse Cotangent

FORMULA

Decimal expansion of transcendental number arccot((1 + t)/(1 - t)) where t=cot(Pi*sqrt(2)/2) tanh(Pi*sqrt(2)/2). - Artur Jasinski, Sep 25 2008

EXAMPLE

1.424741778429980889761547806889234152802066334601818040657245773...

MATHEMATICA

t = Cot[Pi Sqrt[2]/2] Tanh[Pi Sqrt[2]/2]; s = ArcCot[(1 + t)/(1 - t)]; RealDigits[N[s, 102]] (* Artur Jasinski, Sep 25 2008 *)

PROG

(PARI) default(realprecision, 100); {t = cotan(Pi/sqrt(2))*tanh(Pi/sqrt(2))}; atan((1-t)/(1+t)) \\ G. C. Greubel, Feb 01 2019

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Arctan((1-Cot(Pi(R)/Sqrt(2))*Tanh(Pi(R)/Sqrt(2)))/(1+Cot(Pi(R)/Sqrt(2))*Tanh(Pi(R)/Sqrt(2)))); // G. C. Greubel, Feb 01 2019

(Sage) t = cot(pi/sqrt(2))*tanh(pi/sqrt(2)); numerical_approx(atan((1-t)/(1+t)), digits=100) # G. C. Greubel, Feb 01 2019

CROSSREFS

Sequence in context: A114566 A013679 A096428 * A180156 A110638 A154995

Adjacent sequences:  A091004 A091005 A091006 * A091008 A091009 A091010

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Dec 13 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 20:02 EDT 2019. Contains 326109 sequences. (Running on oeis4.)