This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091007 Decimal expansion of Sum_{n>=1} arccot(n^2). 1
 1, 4, 2, 4, 7, 4, 1, 7, 7, 8, 4, 2, 9, 9, 8, 0, 8, 8, 9, 7, 6, 1, 5, 4, 7, 8, 0, 6, 8, 8, 9, 2, 3, 4, 1, 5, 2, 8, 0, 2, 0, 6, 6, 3, 3, 4, 6, 0, 1, 8, 1, 8, 0, 4, 0, 6, 5, 7, 2, 4, 5, 7, 7, 3, 1, 3, 7, 1, 1, 3, 8, 6, 3, 0, 2, 1, 0, 3, 1, 9, 6, 5, 8, 1, 5, 4, 9, 9, 2, 0, 8, 4, 9, 8, 5, 1, 7, 6, 6, 3, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Wilf's constant. - Artur Jasinski, Sep 25 2008 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 G. Boros, V. Moll, Sums of arctangents and some formulas of Ramanujan, Sci. Ser. A Math. Sci 11 (2005) 13-24 MR2196063 eq. (1.3). Eric Weisstein's World of Mathematics, Inverse Cotangent FORMULA Decimal expansion of transcendental number arccot((1 + t)/(1 - t)) where t=cot(Pi*sqrt(2)/2) tanh(Pi*sqrt(2)/2). - Artur Jasinski, Sep 25 2008 EXAMPLE 1.424741778429980889761547806889234152802066334601818040657245773... MATHEMATICA t = Cot[Pi Sqrt[2]/2] Tanh[Pi Sqrt[2]/2]; s = ArcCot[(1 + t)/(1 - t)]; RealDigits[N[s, 102]] (* Artur Jasinski, Sep 25 2008 *) PROG (PARI) default(realprecision, 100); {t = cotan(Pi/sqrt(2))*tanh(Pi/sqrt(2))}; atan((1-t)/(1+t)) \\ G. C. Greubel, Feb 01 2019 (MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Arctan((1-Cot(Pi(R)/Sqrt(2))*Tanh(Pi(R)/Sqrt(2)))/(1+Cot(Pi(R)/Sqrt(2))*Tanh(Pi(R)/Sqrt(2)))); // G. C. Greubel, Feb 01 2019 (Sage) t = cot(pi/sqrt(2))*tanh(pi/sqrt(2)); numerical_approx(atan((1-t)/(1+t)), digits=100) # G. C. Greubel, Feb 01 2019 CROSSREFS Sequence in context: A114566 A013679 A096428 * A180156 A110638 A154995 Adjacent sequences:  A091004 A091005 A091006 * A091008 A091009 A091010 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Dec 13 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 20:02 EDT 2019. Contains 326109 sequences. (Running on oeis4.)