login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180145
Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 - 3*x^2)/(1 - 4*x - 3*x^2 + 6*x^3).
3
1, 4, 16, 70, 304, 1330, 5812, 25414, 111112, 485818, 2124124, 9287278, 40606576, 177543394, 776269636, 3394069270, 14839825624, 64883892490, 283690631212, 1240375248574, 5423269532992, 23712060090418, 103675797469204
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
The sequence above corresponds to 6 A[5] vectors with decimal values between 191 and 506. These vectors lead for the side squares to A180146 and for the central square to A180147.
FORMULA
G.f.: (1-3*x^2)/(1 - 4*x - 3*x^2 + 6*x^3).
a(n) = 4*a(n-1) + 3*a(n-2) - 6*a(n-3) with a(0)=1, a(1)=4 and a(2)=16.
a(n) = 1/4 + (7+6*A)*A^(-n-1)/44 + (7+6*B)*B^(-n-1)/44 with A=(-3+sqrt(33))/12 and B=(-3-sqrt(33))/12.
a(n) = A180146(n) - 3*A180146(n-2) with A180146(-2) = A180146(-1) = 0.
MAPLE
with(LinearAlgebra): nmax:=22; m:=1; A[5]:=[0, 1, 0, 1, 1, 1, 1, 1, 1]: A:= Matrix([[0, 1, 1, 1, 0, 0, 1, 0, 0], [1, 0, 1, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 1, 1, 1, 0, 0], A[5], [0, 0, 1, 1, 1, 0, 0, 0, 1], [1, 0, 0, 1, 0, 0, 0, 1, 1], [0, 1, 0, 0, 1, 0, 1, 0, 1], [0, 0, 1, 0, 0, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
CROSSREFS
Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).
Sequence in context: A298048 A344267 A144316 * A133789 A151244 A280767
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 13 2010
STATUS
approved