OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -1, -2).
FORMULA
G.f.: (1-2*x^2)/(1 - 4*x + x^2 + 2*x^3).
a(n) = 4*a(n-1) - 1*a(n-2) - 2*a(n-3) with a(0)=1, a(1)=4 and a(2)=13.
a(n) = 1/4 + (21-6*A)*A^(-n-1)/68 + (21-6*B)*B^(-n-1)/68 with A=(-3+sqrt(17))/4 and B=(-3-sqrt(17))/4.
MAPLE
with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0, 0, 0, 0, 1, 0, 0, 0, 0]: A:= Matrix([[0, 1, 1, 1, 0, 0, 1, 0, 0], [1, 0, 1, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 1, 1, 1, 0, 0], A[5], [0, 0, 1, 1, 1, 0, 0, 0, 1], [1, 0, 0, 1, 0, 0, 0, 1, 1], [0, 1, 0, 0, 1, 0, 1, 0, 1], [0, 0, 1, 0, 0, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 13 2010
STATUS
approved