login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180037
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1+x)/(1-5*x-2*x^2).
3
1, 6, 32, 172, 924, 4964, 26668, 143268, 769676, 4134916, 22213932, 119339492, 641125324, 3444305604, 18503778668, 99407504548, 534045080076, 2869040409476, 15413292207532, 82804541856612, 444849293698124
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the corner and side squares (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032.
The sequence above corresponds to 28 red queen vectors, i.e. A[5] vector, with decimal values between 3 and 384. The central squares lead for these vectors to A180038.
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,2,3,4,5} containing no subwords 00, 11, 22 and 33. - Milan Janjic, Jan 31 2015, Oct 05 2016
a(n) equals the number of sequences over {0,1,2,3,4,5} of length n where no two consecutive terms differ by 4. - David Nacin, May 31 2017
FORMULA
G.f.: (1+x)/(1-5*x-2*x^2).
a(n) = 5*a(n-1) + 2*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7-A)*A^(-n-1)+(7-B)*B^(-n-1))/33 with A = (-5+sqrt(33))/4 and B = (-5-sqrt(33))/4.
MAPLE
with(LinearAlgebra): nmax:=21; m:=1; A[5]:= [0, 0, 0, 0, 0, 0, 0, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{5, 2}, {1, 6}, 50] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 6]; [n le 2 select I[n] else 5*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
Sequence in context: A137637 A125190 A264460 * A277742 A000558 A047763
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved