login
A179865
Number of n-bit binary numbers containing one run of 0's.
4
1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
OFFSET
1,3
FORMULA
For n>=2, a(n) = A000217(n-1).
G.f.: x*(1 + x/(1-x)^3). - Gennady Eremin, Feb 23 2021
For n > 1, a(n+1) = a(n) + n. - Gennady Eremin, Mar 12 2021
E.g.f.: x*(2 + x*exp(x))/2. - Stefano Spezia, Jan 29 2023
EXAMPLE
G.f. = x + x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 21*x^7 + 28*x^8 + ...
For n = 4, the 6 numbers are 1000, 1001, 1011, 1100, 1101, 1110.
PROG
(Python)
def A179865(n):
if n==1: return 1
return n*(n-1)//2 # Gennady Eremin, Mar 14 2021
CROSSREFS
Cf. A000217.
Sequence in context: A253145 A161680 A000217 * A105340 A176659 A109811
KEYWORD
nonn,base,easy
AUTHOR
Vladimir Shevelev, Jul 30 2010, Aug 03 2010
EXTENSIONS
Edited by N. J. A. Sloane, Aug 08 2010
More terms from Michel Marcus, Feb 23 2021
STATUS
approved