login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179862
An unrestricted partition statistic: sum of A179864 over row n.
5
1, 4, 9, 19, 33, 59, 93, 150, 226, 342, 494, 721, 1011, 1425, 1960, 2695, 3633, 4903, 6506, 8633, 11312, 14796, 19157, 24773, 31744, 40608, 51578, 65372, 82341, 103522, 129428, 161505, 200589, 248614, 306869, 378051, 463987, 568387, 693989, 845754, 1027625
OFFSET
1,2
COMMENTS
Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n minus the number of partitions of n. - Omar E. Pol, Jul 15 2013
Sum of the hook-lengths of the (1,1)-cells of the Ferrers diagrams over all partitions of n. Example: a(3) = 9 because in each of the partitions 3, 21, and 111 the (1,1)-cell has hook-length 3. Comment follows at once from the previous comment. - Emeric Deutsch, Dec 20 2015
FORMULA
a(n) = Sum_{k=1..A000041(n)} A179864(n,k).
a(n) = A211978(n) - A000041(n). - Omar E. Pol, Jul 15 2013
a(n) = A225600(A139582(n)-1), n>= 1. - Omar E. Pol, Jul 25 2013
EXAMPLE
From Omar E. Pol, Jul 15 2013: (Start)
Illustration of initial terms using a Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). a(n) is the x-coordinate of the mentioned largest peak. Note that this Dyck path is infinite.
.
7..................................
. /\
5.................... / \ /\
. /\ / \ /\ /
3.......... / \ / \ / \/
2..... /\ / \ /\/ \ /
1.. /\ / \ /\/ \ / \ /\/
0 /\/ \/ \/ \/ \/
. 0,2, 6, 12, 24, 40... = A211978
. 1, 4, 9, 19, 33... = this sequence (End)
CROSSREFS
Cf. A179864.
Sequence in context: A038403 A009856 A009920 * A008036 A009863 A301249
KEYWORD
nonn
AUTHOR
Alford Arnold, Aug 02 2010
EXTENSIONS
More terms from Omar E. Pol, Jul 15 2013
STATUS
approved