login
A179661
Triangle read by rows: T(n,k) is the largest least common multiple of any k-element subset of the first n positive integers.
3
1, 2, 2, 3, 6, 6, 4, 12, 12, 12, 5, 20, 60, 60, 60, 6, 30, 60, 60, 60, 60, 7, 42, 210, 420, 420, 420, 420, 8, 56, 280, 840, 840, 840, 840, 840, 9, 72, 504, 2520, 2520, 2520, 2520, 2520, 2520, 10, 90, 630, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 11, 110, 990
OFFSET
1,2
COMMENTS
Sequence differs from A093919; first divergences are at indices 31, 40, 48, 59.
Main diagonal is A003418.
FORMULA
T(n,k) = max{ lcm(x_1,...,x_k) ; 0 < x_1 < ... < x_k <= n }.
EXAMPLE
Triangle begins:
[ 1 ],
[ 2, 2 ],
[ 3, 6, 6 ],
[ 4, 12, 12, 12 ],
[ 5, 20, 60, 60, 60 ],
[ 6, 30, 60, 60, 60, 60 ].
MATHEMATICA
A179661[n_, k_]:=Max[LCM@@@Subsets[Range[n], {k}]];
A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]], 2];
A002024[n_]:=Floor[1/2+Sqrt[2*n]];
PROG
(Magma) A179661:=func< n, k | Max([ LCM(s): s in Subsets({1..n}, k) ]) >; z:=12; [ A179661(n, k): k in [1..n], n in [1..z] ]; // Klaus Brockhaus, Jan 16 2011
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved