OFFSET
1,1
FORMULA
a(n) = Product_{k=1..n} (k * A020725(k)) / (n^2) = Product_{k=1..n} (k * (k+1)) / (n^2).
G.f.: 1 + G(0), where G(k)= 1 + x*(k+1)/(1 - (k+2)/(k+2 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = BesselJ(2,2) - BesselJ(3,2). (End)
EXAMPLE
a(5) = ((5-1)! * (5+1)!) / 5 = (4! * 6!) / 5 = (24 * 720) / 5 = 17280 / 5 = 3456.
a(5) = ((5 -1)!^2) * (5+1) = 24^2 * 6 = 3456.
MATHEMATICA
Table[(n - 1)!*(n + 1)!/n, {n, 1, 15}] (* Amiram Eldar, Jan 18 2021 *)
PROG
(PARI) a(n) = (n-1)!^2*(n+1) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 14 2010
STATUS
approved