login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179111
Partial sums of round(Fibonacci(n)/11).
1
0, 0, 0, 0, 0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 233, 378, 613, 993, 1608, 2603, 4213, 6818, 11033, 17853, 28889, 46745, 75637, 122385, 198025, 320413, 518441, 838857, 1357301, 2196161, 3553466, 5749631, 9303101
OFFSET
0,8
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (2,0,-1,0,0,0,0,0,0,1,-2,0,1).
FORMULA
a(n) = round(Fibonacci(n+2)/11 - n/10 - 83/220).
a(n) = floor(Fibonacci(n+2)/11 - n/10 - 4/55).
a(n) = ceiling(Fibonacci(n+2)/11 - n/10 - 15/22).
a(n) = a(n-10) + Fibonacci(n-3) - 1, n > 10.
a(n) = 2*a(n-1) - a(n-3) + a(n-10) - 2*a(n-11) + a(n-13), n > 11.
G.f.: -x^6 / ( (1+x)*(x^2+x-1)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)*(x-1)^2 ).
EXAMPLE
a(11) = 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 2 + 3 + 5 + 8 = 20.
MAPLE
A179111 := proc(n) add( round(combinat[fibonacci](i)/11) , i=0..n) ; end proc:
MATHEMATICA
Accumulate[Round[Fibonacci[Range[0, 40]]/11]] (* or *) LinearRecurrence[ {2, 0, -1, 0, 0, 0, 0, 0, 0, 1, -2, 0, 1}, {0, 0, 0, 0, 0, 0, 1, 2, 4, 7, 12, 20, 33}, 40] (* Harvey P. Dale, Aug 19 2017 *)
CROSSREFS
Sequence in context: A006731 A222036 A000071 * A093607 A005182 A329397
KEYWORD
nonn
AUTHOR
Mircea Merca, Jan 04 2011
STATUS
approved