login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of round(Fibonacci(n)/11).
1

%I #22 Jul 04 2019 03:34:26

%S 0,0,0,0,0,0,1,2,4,7,12,20,33,54,88,143,233,378,613,993,1608,2603,

%T 4213,6818,11033,17853,28889,46745,75637,122385,198025,320413,518441,

%U 838857,1357301,2196161,3553466,5749631,9303101

%N Partial sums of round(Fibonacci(n)/11).

%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,0,0,0,0,0,0,1,-2,0,1).

%F a(n) = round(Fibonacci(n+2)/11 - n/10 - 83/220).

%F a(n) = floor(Fibonacci(n+2)/11 - n/10 - 4/55).

%F a(n) = ceiling(Fibonacci(n+2)/11 - n/10 - 15/22).

%F a(n) = a(n-10) + Fibonacci(n-3) - 1, n > 10.

%F a(n) = 2*a(n-1) - a(n-3) + a(n-10) - 2*a(n-11) + a(n-13), n > 11.

%F G.f.: -x^6 / ( (1+x)*(x^2+x-1)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)*(x-1)^2 ).

%e a(11) = 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 2 + 3 + 5 + 8 = 20.

%p A179111 := proc(n) add( round(combinat[fibonacci](i)/11) ,i=0..n) ; end proc:

%t Accumulate[Round[Fibonacci[Range[0,40]]/11]] (* or *) LinearRecurrence[ {2,0,-1,0,0,0,0,0,0,1,-2,0,1},{0,0,0,0,0,0,1,2,4,7,12,20,33},40] (* _Harvey P. Dale_, Aug 19 2017 *)

%K nonn

%O 0,8

%A _Mircea Merca_, Jan 04 2011