The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178975 Number of ways to place 5 nonattacking amazons (superqueens) on an n X n toroidal board. 2
 0, 0, 0, 0, 0, 0, 0, 640, 7290, 123640, 640574, 3869280, 12950132, 47022360, 123467040, 340840960, 759697190, 1758672648, 3494388306, 7150739360, 13041285516, 24354594440, 41566378136, 72345297024, 117101090250, 192694385416, 298703838186, 469581881888, 702148696580, 1062719841960, 1541332566284, 2259300468736, 3192255589842, 4552716843720, 6288527141890, 8758324830240, 11859789616944, 16178716174856, 21527161542900, 28834708173440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS An amazon (superqueen) moves like a queen and a knight. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 V. Kotesovec, Non-attacking chess pieces, 6ed, 2013 FORMULA a(n) = n^2/5*(1/24*n^8 -5/3*n^7 +635/24*n^6 -1145/6*n^5 +4139/16*n^4 +10985/2*n^3 -916385/24*n^2 +273775/3*n -128930/3 +(5/24*n^6 -15/2*n^5 +5315/48*n^4 -1675/2*n^3 +25855/8*n^2 -4935*n -2290/3)*(-1)^n +(45/2*n^2 -390*n +1630)*cos(n*Pi/2) +400/3*cos(n*Pi/3) +(40/3*n^2 -640/3*n+2480/3)*cos(2*n*Pi/3) +16*cos(4*n*Pi/5) +16*cos(8*n*Pi/5)), n>=15. G.f.: -2*x^8*(1176*x^64 + 5556*x^63 + 15132*x^62 + 28428*x^61 + 39340*x^60 + 30066*x^59 - 16046*x^58 - 97562*x^57 - 191158*x^56 - 227584*x^55 - 150082*x^54 + 56017*x^53 + 289119*x^52 + 339896*x^51 + 45336*x^50 - 611255*x^49 - 1380704*x^48 - 2278261*x^47 - 3764650*x^46 - 7542849*x^45 - 7704482*x^44 + 18495516*x^43 + 165924351*x^42 + 637466559*x^41 + 1903273538*x^40 + 4724140916*x^39 + 10422040024*x^38 + 20690172375*x^37 + 37875420877*x^36 + 64238796480*x^35 + 102190978070*x^34 + 152823563437*x^33 + 216401077492*x^32 + 290462738417*x^31 + 371272897408*x^30 + 452086367452*x^29 + 526060962825*x^28 + 584865148004*x^27 + 622627590675*x^26 + 634259897550*x^25 + 619201117902*x^24 + 578669435625*x^23 + 518210895306*x^22 + 443951015905*x^21 + 364069798686*x^20 + 285127462600*x^19 + 213313173667*x^18 + 151952471981*x^17 + 103062047860*x^16 + 66251579160*x^15 + 40354587182*x^14 + 23135311545*x^13 + 12479773177*x^12 + 6269223018*x^11 + 2933204824*x^10 + 1256492269*x^9 + 493760966*x^8 + 172473531*x^7 + 54013568*x^6 + 14176791*x^5 + 3222186*x^4 + 525572*x^3 + 74355*x^2 + 4605*x + 320)/((x-1)^11*(x+1)^9*(x^2+1)^5*(x^2-x+1)^3*(x^2+x+1)^5*(x^4+x^3+x^2+x+1)^3). MATHEMATICA CoefficientList[Series[- 2 x^7 * (1176 x^64 + 5556 x^63 + 15132 x^62 + 28428 x^61 + 39340 x^60 + 30066 x^59 - 16046 x^58 - 97562 x^57 - 191158 x^56 - 227584 x^55 - 150082 x^54 + 56017 x^53 + 289119 x^52 + 339896 x^51 + 45336 x^50 - 611255 x^49 - 1380704 x^48 - 2278261 x^47 - 3764650 x^46 - 7542849 x^45 - 7704482 x^44 + 18495516 x^43 + 165924351 x^42 + 637466559 x^41 + 1903273538 x^40 + 4724140916 x^39 + 10422040024 x^38 + 20690172375 x^37 + 37875420877 x^36 + 64238796480 x^35 + 102190978070 x^34 + 152823563437 x^33 + 216401077492 x^32 + 290462738417 x^31 + 371272897408 x^30 + 452086367452 x^29 + 526060962825 x^28 + 584865148004 x^27 + 622627590675 x^26 + 634259897550 x^25 + 619201117902 x^24 + 578669435625 x^23 + 518210895306 x^22 + 443951015905 x^21 + 364069798686 x^20 + 285127462600 x^19 + 213313173667 x^18 + 151952471981 x^17 + 103062047860 x^16 + 66251579160 x^15 + 40354587182 x^14 + 23135311545 x^13 + 12479773177 x^12 + 6269223018 x^11 + 2933204824 x^10 + 1256492269 x^9 + 493760966 x^8 + 172473531 x^7 + 54013568 x^6 + 14176791 x^5 + 3222186 x^4 + 525572 x^3 + 74355 x^2 + 4605 x + 320) / ((x - 1)^11 (x + 1)^9 (x^2 + 1)^5 (x^2 - x + 1)^3 (x^2 + x + 1)^5 (x^4 + x^3 + x^2 + x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *) CROSSREFS Cf. A178967, A173775, A178972, A178973, A178974. Sequence in context: A027885 A097105 A233911 * A170774 A290029 A268875 Adjacent sequences: A178972 A178973 A178974 * A178976 A178977 A178978 KEYWORD nonn,nice,easy AUTHOR Vaclav Kotesovec, Jan 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 19:45 EDT 2024. Contains 372703 sequences. (Running on oeis4.)