The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178975 Number of ways to place 5 nonattacking amazons (superqueens) on an n X n toroidal board. 2
0, 0, 0, 0, 0, 0, 0, 640, 7290, 123640, 640574, 3869280, 12950132, 47022360, 123467040, 340840960, 759697190, 1758672648, 3494388306, 7150739360, 13041285516, 24354594440, 41566378136, 72345297024, 117101090250, 192694385416, 298703838186, 469581881888, 702148696580, 1062719841960, 1541332566284, 2259300468736, 3192255589842, 4552716843720, 6288527141890, 8758324830240, 11859789616944, 16178716174856, 21527161542900, 28834708173440 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
An amazon (superqueen) moves like a queen and a knight.
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
FORMULA
a(n) = n^2/5*(1/24*n^8 -5/3*n^7 +635/24*n^6 -1145/6*n^5 +4139/16*n^4 +10985/2*n^3 -916385/24*n^2 +273775/3*n -128930/3 +(5/24*n^6 -15/2*n^5 +5315/48*n^4 -1675/2*n^3 +25855/8*n^2 -4935*n -2290/3)*(-1)^n +(45/2*n^2 -390*n +1630)*cos(n*Pi/2) +400/3*cos(n*Pi/3) +(40/3*n^2 -640/3*n+2480/3)*cos(2*n*Pi/3) +16*cos(4*n*Pi/5) +16*cos(8*n*Pi/5)), n>=15.
G.f.: -2*x^8*(1176*x^64 + 5556*x^63 + 15132*x^62 + 28428*x^61 + 39340*x^60 + 30066*x^59 - 16046*x^58 - 97562*x^57 - 191158*x^56 - 227584*x^55 - 150082*x^54 + 56017*x^53 + 289119*x^52 + 339896*x^51 + 45336*x^50 - 611255*x^49 - 1380704*x^48 - 2278261*x^47 - 3764650*x^46 - 7542849*x^45 - 7704482*x^44 + 18495516*x^43 + 165924351*x^42 + 637466559*x^41 + 1903273538*x^40 + 4724140916*x^39 + 10422040024*x^38 + 20690172375*x^37 + 37875420877*x^36 + 64238796480*x^35 + 102190978070*x^34 + 152823563437*x^33 + 216401077492*x^32 + 290462738417*x^31 + 371272897408*x^30 + 452086367452*x^29 + 526060962825*x^28 + 584865148004*x^27 + 622627590675*x^26 + 634259897550*x^25 + 619201117902*x^24 + 578669435625*x^23 + 518210895306*x^22 + 443951015905*x^21 + 364069798686*x^20 + 285127462600*x^19 + 213313173667*x^18 + 151952471981*x^17 + 103062047860*x^16 + 66251579160*x^15 + 40354587182*x^14 + 23135311545*x^13 + 12479773177*x^12 + 6269223018*x^11 + 2933204824*x^10 + 1256492269*x^9 + 493760966*x^8 + 172473531*x^7 + 54013568*x^6 + 14176791*x^5 + 3222186*x^4 + 525572*x^3 + 74355*x^2 + 4605*x + 320)/((x-1)^11*(x+1)^9*(x^2+1)^5*(x^2-x+1)^3*(x^2+x+1)^5*(x^4+x^3+x^2+x+1)^3).
MATHEMATICA
CoefficientList[Series[- 2 x^7 * (1176 x^64 + 5556 x^63 + 15132 x^62 + 28428 x^61 + 39340 x^60 + 30066 x^59 - 16046 x^58 - 97562 x^57 - 191158 x^56 - 227584 x^55 - 150082 x^54 + 56017 x^53 + 289119 x^52 + 339896 x^51 + 45336 x^50 - 611255 x^49 - 1380704 x^48 - 2278261 x^47 - 3764650 x^46 - 7542849 x^45 - 7704482 x^44 + 18495516 x^43 + 165924351 x^42 + 637466559 x^41 + 1903273538 x^40 + 4724140916 x^39 + 10422040024 x^38 + 20690172375 x^37 + 37875420877 x^36 + 64238796480 x^35 + 102190978070 x^34 + 152823563437 x^33 + 216401077492 x^32 + 290462738417 x^31 + 371272897408 x^30 + 452086367452 x^29 + 526060962825 x^28 + 584865148004 x^27 + 622627590675 x^26 + 634259897550 x^25 + 619201117902 x^24 + 578669435625 x^23 + 518210895306 x^22 + 443951015905 x^21 + 364069798686 x^20 + 285127462600 x^19 + 213313173667 x^18 + 151952471981 x^17 + 103062047860 x^16 + 66251579160 x^15 + 40354587182 x^14 + 23135311545 x^13 + 12479773177 x^12 + 6269223018 x^11 + 2933204824 x^10 + 1256492269 x^9 + 493760966 x^8 + 172473531 x^7 + 54013568 x^6 + 14176791 x^5 + 3222186 x^4 + 525572 x^3 + 74355 x^2 + 4605 x + 320) / ((x - 1)^11 (x + 1)^9 (x^2 + 1)^5 (x^2 - x + 1)^3 (x^2 + x + 1)^5 (x^4 + x^3 + x^2 + x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)
CROSSREFS
Sequence in context: A027885 A097105 A233911 * A170774 A290029 A268875
KEYWORD
nonn,nice,easy
AUTHOR
Vaclav Kotesovec, Jan 02 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 19:45 EDT 2024. Contains 372703 sequences. (Running on oeis4.)