login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178974
Number of ways to place 4 nonattacking amazons (superqueens) on an n X n toroidal board.
2
0, 0, 0, 0, 0, 0, 98, 3328, 17496, 99600, 316052, 1041408, 2501538, 6157536, 12531150, 25938944, 47168268, 86938272, 145818008, 247240000, 390084786, 620964256, 933865918, 1414946304, 2047225000, 2980849040, 4177648224, 5886858432, 8032809818, 11012886000, 14689386642, 19674427392, 25732782504, 33779841296, 43433208000, 56027023488, 70963952198, 90145026976, 112667956362, 141187744000
OFFSET
1,7
COMMENTS
An amazon (superqueen) moves like a queen and a knight.
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
FORMULA
a(n)= (1/4)*n^2*(n^6/6 -4*n^5 +197*n^4/6 -66*n^3 -1941*n^2/4 +2638*n -18907/6 +(n^4/2 -10*n^3 +289*n^2/4 -210*n +357/2)*(-1)^n +18*cos(Pi*n/2) +32/3*cos(4*Pi*n/3)), n>=10.
G.f.: 2*x^7*(162*x^30 -350*x^29 -1488*x^28 -718*x^27 +2389*x^26 +6635*x^25 +6157*x^24 -3372*x^23 -15873*x^22 -22215*x^21 -8561*x^20 +23622*x^19 +55919*x^18 +38469*x^17 -91949*x^16 -461696*x^15 -1076702*x^14 -1978832*x^13 -2858196*x^12 -3576618*x^11 -3727323*x^10 -3419559*x^9 -2634463*x^8 -1782420*x^7 -988307*x^6 -472291*x^5 -171451*x^4 -53262*x^3 -10265*x^2 -1713*x -49)/((x-1)^9*(x+1)^7*(x^2+1)^3*(x^2+x+1)^3).
MATHEMATICA
CoefficientList[Series[2 x^6 (162 x^30 - 350 x^29 - 1488 x^28 - 718 x^27 + 2389 x^26 + 6635 x^25 + 6157 x^24 - 3372 x^23 - 15873 x^22 - 22215 x^21 - 8561 x^20 + 23622 x^19 + 55919 x^18 + 38469 x^17 - 91949 x^16 - 461696 x^15 - 1076702 x^14 - 1978832 x^13 - 2858196 x^12 - 3576618 x^11 - 3727323 x^10 - 3419559 x^9 - 2634463 x^8 - 1782420 x^7 - 988307 x^6 - 472291 x^5 - 171451 x^4 - 53262 x^3 - 10265 x^2 - 1713 x - 49) / ((x - 1)^9 (x + 1)^7 (x^2 + 1)^3 (x^2 + x + 1)^3), {x, 0, 40}], x] (* _Vincenzo Librandi Jun 01 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 02 2011
STATUS
approved