login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178704
Partial sums of floor(3^n/7).
1
0, 0, 1, 4, 15, 49, 153, 465, 1402, 4213, 12648, 37954, 113874, 341634, 1024915, 3074758, 9224289, 27672883, 83018667, 249056019, 747168076, 2241504247, 6724512762, 20173538308, 60520614948, 181561844868
OFFSET
0,4
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((6*3^n - 14*n - 7)/28).
a(n) = floor((6*3^n - 14*n + 2)/28).
a(n) = ceiling((6*3^n - 14*n - 16)/28).
a(n) = round((6*3^n - 14*n - 6)/28).
a(n) = a(n-6) + 52*3^(n-5) - 3, n > 5.
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) + 5*a(n-4) - 7*a(n-5) + 3*a(n-6).
G.f.: x^2*(1 - x + 2*x^2)/((1-3*x)*(1+x)*(1-x+x^2)*(1-x)^2).
EXAMPLE
a(6) = 0 + 0 + 1 + 3 + 11 + 34 + 104 = 153.
MAPLE
A178704 := proc(n) add( floor(3^i/7), i=0..n) ; end proc:
MATHEMATICA
Table[Floor[(6*3^n-14*n+2)/28], {n, 0, 30}] (* G. C. Greubel, Jan 25 2019 *)
PROG
(Magma) [Round((6*3^n-14*n-7)/28): n in [0..30]]; // Vincenzo Librandi, Jun 21 2011
(PARI) vector(30, n, n--; ((6*3^n-14*n+2)/28)\1) \\ G. C. Greubel, Jan 25 2019
(Sage) [floor((6*3^n-14*n+2)/28) for n in (0..30)] # G. C. Greubel, Jan 25 2019
CROSSREFS
Sequence in context: A093967 A052201 A320460 * A099167 A056337 A053406
KEYWORD
nonn,less
AUTHOR
Mircea Merca, Dec 26 2010
STATUS
approved