login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178703
Partial sums of round(3^n/7).
1
0, 0, 1, 5, 17, 52, 156, 468, 1405, 4217, 12653, 37960, 113880, 341640, 1024921, 3074765, 9224297, 27672892, 83018676, 249056028, 747168085, 2241504257, 6724512773, 20173538320, 60520614960, 181561844880
OFFSET
0,4
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((3*3^n - 7)/14).
a(n) = floor((3*3^n - 1)/14).
a(n) = ceiling((3*3^n - 13)/14).
a(n) = a(n-6) + 52*3^(n-5), n > 5.
a(n) = 5*a(n-1) - 8*a(n-2) + 7*a(n-3) - 3*a(n-4), n > 3.
G.f.: x^2/((1 - x)*(1 - 3*x)*(1 - x + x^2)).
a(n) = 3^(n+1)/14 - 1/2 + A174737(n)/7. - R. J. Mathar, Jan 08 2011
EXAMPLE
a(6) = 0 + 0 + 1 + 4 + 12 + 35 + 104 = 156.
MAPLE
A178703 := proc(n) add( round(3^i/7), i=0..n) ; end proc:
MATHEMATICA
Table[Floor[(3^(n+1)-1)/14], {n, 0, 30}] (* G. C. Greubel, Jan 25 2019 *)
PROG
(Magma) [Floor((3*3^n-1)/14): n in [0..30]]; // Vincenzo Librandi, May 01 2011
(PARI) vector(30, n, n--; ((3^(n+1)-1)/14)\1) \\ G. C. Greubel, Jan 25 2019
(Sage) [floor((3^(n+1)-1)/14) for n in (0..30)] # G. C. Greubel, Jan 25 2019
CROSSREFS
Sequence in context: A190173 A187257 A290186 * A248875 A037544 A090575
KEYWORD
nonn,less,easy
AUTHOR
Mircea Merca, Dec 28 2010
STATUS
approved