login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178185
Numerator of Sum_{k=1..n} 1/2^((k^2 + 3*k)/2).
3
1, 9, 145, 4641, 297025, 38019201, 9732915457, 4983252713985, 5102850779120641, 10450638395639072769, 42805814868537642061825, 350665235403060363770470401, 5745299216843741000015387049985
OFFSET
1,2
COMMENTS
Series of the kind m^((k^2 + 3*k)/2) from k=1 to n were studied by Bernoulli and Euler.
LINKS
FORMULA
a(n) = 2^(n+1)*a(n-1) + 1, a(1) = 1. - Alexandre Herrera, Mar 23 2024
a(n) ~ c * A036442(n+1) = c * 2^(n*(n+3)/2), where c = 2^(1/8) * EllipticTheta[2, 0, 1/Sqrt[2]] - 3 [in Mathematica] = 2^(1/8) * JacobiTheta2(0, 1/sqrt(2)) - 3 [in Maple] = 0.2832651213103077325876855404508588684521230759134794956... - Vaclav Kotesovec, Apr 10 2024
MATHEMATICA
aa = {}; m = 1/2; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, Numerator[sum]], {n, 1, 20}]; aa
Numerator[Table[Sum[1/2^((k^2 + 3*k)/2), {k, 1, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Apr 10 2024 *)
PROG
(PARI) a(n) = numerator(sum(k=1, n, (1/2)^((k^2+3*k)/2))); \\ Michel Marcus, Sep 09 2013
CROSSREFS
Cf. A036442 (denominators).
Sequence in context: A132060 A362656 A320333 * A244822 A299319 A241797
KEYWORD
nonn,frac
AUTHOR
Artur Jasinski, May 21 2010
STATUS
approved