OFFSET
1,2
COMMENTS
Number of redundant paths for a fault-tolerant ATM switch.
Hankel transform (see A001906 for definition ) of A001850, A006139, A084601; also Hankel transform of the sequence 1, 0, 4, 0, 24, 0, 160, 0, 1120, ... (A059304 with interpolated zeros). - Philippe Deléham, Jul 03 2005
a(n) = the multiplicative Wiener index of the wheel graph with n+3 vertices. The multiplicative Wiener index of a connected simple graph G is defined as the product of the distances between all pairs of distinct vertices of G. The wheel graph with n+3 vertices has (n+3)(n+2)/2 pairs of distinct vertices, of which 2(n+2) are adjacent; each of the remaining (n+2)(n-1)/2 pairs are at distance 2; consequently, the multiplicative Wiener index is 2^((n-1)(n+2)/2) = a(n). - Emeric Deutsch, Aug 17 2015
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..80
P. Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161, 2013 and J. Int. Seq. 17 (2014) # 14.5.1
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116.
C. Lo and C. Chiu, A Fault-Tolerant Architecture for ATM Networks, 20th IEEE Conf. Local Computer Networks, 1995, pp. 29-36
FORMULA
a(1) = 1, a(n) = a(n-1) * 2^n. - Vincenzo Librandi, Oct 24 2012
MATHEMATICA
Table[2^((n-1) * (n+2)/2), {n, 1, 30}] (* Vincenzo Librandi, Oct 24 2012 *)
PROG
(Magma) I:=[1]; [n le 1 select I[n] else Self(n-1)*2^n: n in [1..20]]; // Vincenzo Librandi, Oct 24 2012
(PARI) a(n)=2^((n-1)*(n+2)/2) \\ Charles R Greathouse IV, Oct 24 2012
(Maxima) A036442[n]:=2^((n-1)*(n+2)/2)$
makelist(A036442[n], n, 1, 30); /* Martin Ettl, Oct 29 2012 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Abdallah Rayhan (rayhan(AT)engr.uvic.ca)
STATUS
approved