login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177976
Square array T(n,k) read by antidiagonals up. Cumulative column sums of A177975.
7
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 15, 13, 5, 1, 1, 12, 29, 29, 19, 6, 1, 1, 18, 42, 63, 49, 26, 7, 1, 1, 22, 69, 106, 118, 76, 34, 8, 1, 1, 28, 95, 189, 225, 201, 111, 43, 9, 1, 1, 32, 134, 289, 434, 427, 320, 155, 53, 10, 1, 1, 42, 172, 444, 729, 888, 748, 484, 209, 64, 11, 1
OFFSET
1,5
COMMENTS
Each row is described by both a binomial expression and a closed form polynomial. The closed form polynomials given in A177977 extends this table to the left. For example the 0th column is A002321 and the -1st column is A092149.
Also number of ordered k-tuples of integers from [ 1..n ] with no global factor. - Seiichi Manyama, Jun 12 2021
LINKS
FORMULA
From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{j=1..n} Sum_{d|j} mu(j/d) * binomial(d+k-2,d-1).
T(n,k) = binomial(n+k-1,k) - Sum_{j=2..n} T(floor(n/j),k). (End)
EXAMPLE
Table begins:
1..1...1....1.....1.....1......1......1.......1.......1.......1
1..2...3....4.....5.....6......7......8.......9......10......11
1..4...8...13....19....26.....34.....43......53......64......76
1..6..15...29....49....76....111....155.....209.....274.....351
1.10..29...63...118...201....320....484.....703.....988....1351
1.12..42..106...225...427....748...1233....1937....2926....4278
1.18..69..189...434...888...1671...2948....4939....7930...12285
1.22..95..289...729..1624...3303...6260...11209...19150...31447
1.28.134..444..1209..2890...6278..12659...24034...43405...75139
1.32.172..626..1850..4761..11067..23762...47841...91301..166506
1.42.237..911..2850..7763..19074..43209...91598..183678..351261
1.46.287.1203..4059.11829..30911..74129..165737..349426..700699
1.58.377.1657..5878.18016..49474.124516..291706..643355.1347344
1.64.452.2130..8044.26117..75676.200313..492185.1135761.2483392
1.72.552.2766.11020.37599.114199.316228..811416.1952182.4443582
1.80.652.3462.14566.52311.166747.483340.1295295.3248246.7692894
PROG
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*binomial(d+k-2, d-1))); \\ Seiichi Manyama, Jun 12 2021
(PARI) T(n, k) = binomial(n+k-1, k)-sum(j=2, n, T(n\j, k)); \\ Seiichi Manyama, Jun 12 2021
CROSSREFS
Column k=1..5 gives A000012, A002088, A015631, A015634, A015650.
Sequence in context: A230858 A060098 A161492 * A034781 A110470 A347699
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, May 16 2010
STATUS
approved