login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177793
Partial sums of A054247.
1
1, 3, 9, 111, 8659, 4220403, 8594777715, 70377477369459, 2305913405481561715, 302233760834929839713907, 158456627262298939528655810163, 332307157402856267706609817833582195
OFFSET
0,2
COMMENTS
Partial sums of number of n X n binary matrices under action of dihedral group of the square D_4. Can this ever be prime?
FORMULA
a(n) = SUM[i=0..n] A054247(i) = SUM[i=0..n] [(1/8)*(2^(i^2)+2*2^(i^2/4)+3*2^(i^2/2)+2*2^((i^2+i)/2)) if i is even and (1/8)*(2^(i^2)+2*2^((i^2+3)/4)+2^((i^2+1)/2)+4*2^((i^2+i)/2)) if i is odd].
EXAMPLE
a(4) = 1 + 2 + 6 + 102 + 8548 = 8659 = 7 * 1237.
PROG
Contribution from R. J. Mathar, May 28 2010: (Start)
(PARI) A054247(n)={ local(a) ; if(n%2==0, a=2^(n^2)+2*2^(n^2/4)+3*2^(n^2/2)+2*2^((n^2+n)/2), a=2^(n^2)+2*2^((n^2+3)/4)+2^((n^2+1)/2)+4*2^((n^2+n)/2); ) ; return(a/8) ; }
A177793(n)={ return(sum(i=0, n, A054247(i))) ; }
{ for(n=0, 20, print1(A177793(n), ", ") ; ) ; } (End)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 13 2010
EXTENSIONS
Extended by R. J. Mathar, May 28 2010
STATUS
approved