login
A177517
Triangle T(n,k) read by rows defined by recurrence T(n,1)=A000007(n-1) and T(n,k) = sum_{i=1..k-1} T(n-i,k-1) if k>1.
6
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 1, 5, 4, 1, 0, 0, 0, 0, 6, 9, 5, 1, 0, 0, 0, 0, 5, 15, 14, 6, 1, 0, 0, 0, 0, 3, 20, 29, 20, 7, 1, 0, 0, 0, 0, 1, 22, 49, 49, 27, 8, 1, 0, 0, 0, 0, 0, 20, 71, 98, 76, 35, 9, 1, 0, 0, 0, 0, 0, 15, 90, 169, 174, 111, 44, 10, 1, 0, 0, 0, 0, 0, 9, 101, 259, 343, 285, 155, 54, 11, 1, 0, 0, 0, 0, 0, 4, 101, 359, 602, 628, 440, 209, 65, 12, 1, 0, 0, 0, 0, 0, 1, 90, 455, 961, 1230, 1068, 649, 274, 77, 13, 1
OFFSET
1,14
COMMENTS
A008302 is the main entry for this triangle.
Essentially A060701 which is equal to this table beginning from the second column.
The recurrence formula is similar to the recurrence for A177978.
LINKS
FORMULA
T(n,k) = A008302(k-2,n-k), n>=k>1. - R. J. Mathar, Dec 15 2010
EXAMPLE
1,
0,1,
0,0,1,
0,0,1,1,
0,0,0,2,1,
0,0,0,2,3,1,
0,0,0,1,5,4,1,
0,0,0,0,6,9,5,1,
0,0,0,0,5,15,14,6,1,
0,0,0,0,3,20,29,20,7,1,
0,0,0,0,1,22,49,49,27,8,1
MATHEMATICA
t[1, 1] = 1; t[n_, 1] = 0; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0];
Flatten[Table[t[n, k], {n, 12}, {k, n}]]
(* Robert G. Wilson v, Jun 24 2011 *) (* corrected by Mats Granvik, Jan 23 2012 *)
CROSSREFS
Cf. A008302, A060701, A177978, A175105. Column sums are A000142. Row sums are A008930.
Sequence in context: A093323 A106278 A339829 * A227819 A064287 A196389
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved