login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106278
Number of distinct zeros of x^5-x^4-x^3-x^2-x-1 mod prime(n).
4
1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 2, 3, 0, 2, 3, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 3, 1, 2, 3, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 3, 1, 0, 1, 0, 0, 0, 1, 1, 1, 2, 1, 2, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 2, 2, 1, 1, 2, 0, 0, 2, 1, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,9
COMMENTS
This polynomial is the characteristic polynomial of the Fibonacci and Lucas 5-step sequences, A001591 and A074048. Similar polynomials are treated in Serre's paper. The discriminant of the polynomial is 9584=16*599 and 599 is the only prime for which the polynomial has 4 distinct zeros. The primes p yielding 5 distinct zeros, A106281, correspond to the periods of the sequences A001591(k) mod p and A074048(k) mod p having length less than p. The Lucas 5-step sequence mod p has one additional prime p for which the period is less than p: the 599 factor of the discriminant. For this prime, the Fibonacci 5-step sequence mod p has a period of p(p-1).
LINKS
J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see p. 433.
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
MATHEMATICA
Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 150}]
PROG
(Python)
from sympy import Poly, prime
from sympy.abc import x
def A106278(n): return len(Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=prime(n)).ground_roots()) # Chai Wah Wu, Mar 14 2024
CROSSREFS
Cf. A106298 (period of the Lucas 5-step sequences mod prime(n)), A106284 (prime moduli for which the polynomial is irreducible).
Sequence in context: A324351 A116402 A093323 * A339829 A177517 A227819
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved