login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A177438
Continued fraction for Pi - sqrt(2).
2
1, 1, 2, 1, 2, 77, 2, 1, 37, 1, 6, 1, 1, 1, 46, 3, 1, 1, 1, 1, 4, 2, 7, 1, 4, 1, 2, 1, 13, 1, 1, 1, 3, 2, 1, 1, 432, 1, 1, 1, 1, 3, 2, 10, 1, 1, 1, 18, 1, 1700, 1, 1, 5, 2, 9, 4, 4, 1, 1, 2, 1, 3, 27, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 5, 1, 32, 1, 11, 1, 2, 52, 10, 4, 1, 1, 10, 1, 1, 2, 23, 1, 3, 7, 12, 1
OFFSET
0,3
LINKS
MAPLE
with(numtheory): cfrac(Pi-(sqrt(2)), 100, 'quotients'); # Muniru A Asiru, Sep 29 2018
MATHEMATICA
ContinuedFraction[Pi-Sqrt[2], 100] (* Harvey P. Dale, Nov 06 2011 *)
PROG
(PARI) default(realprecision, 100); contfrac(Pi - sqrt(2)) \\ G. C. Greubel, Sep 29 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Pi(R) - Sqrt(2)); // G. C. Greubel, Sep 29 2018
CROSSREFS
Cf. A177437 (decimal expansion of Pi-sqrt(2)), A001203 (continued fraction for Pi), A040000 (continued fraction expansion of sqrt(2)).
Sequence in context: A094690 A010249 A228005 * A367762 A002431 A259328
KEYWORD
cofr,nonn
AUTHOR
Earl Bellinger (ebelling(AT)oswego.edu), May 08 2010
EXTENSIONS
Edited and extended by Klaus Brockhaus, May 09 2010
STATUS
approved