login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177237
Partial sums of round(n^2/19).
1
0, 0, 0, 0, 1, 2, 4, 7, 10, 14, 19, 25, 33, 42, 52, 64, 77, 92, 109, 128, 149, 172, 197, 225, 255, 288, 324, 362, 403, 447, 494, 545, 599, 656, 717, 781, 849, 921, 997, 1077, 1161, 1249, 1342, 1439, 1541, 1648, 1759, 1875, 1996, 2122, 2254
OFFSET
0,6
COMMENTS
The round function is defined here by round(x) = floor(x + 1/2).
There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2, ..., 9, 11, 12, 13, 16, 17, 19, 20, 28, 29, 36, 44).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((n-2)*(n+3)*(2*n+1)/114).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 42)/114).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 54)/114).
a(n) = round((2*n^3 + 3*n^2 - 11*n)/114).
a(n) = a(n-19) + (n+1)*(n-19) + 128, n > 18.
From R. J. Mathar, Dec 13 2010: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-19) - 3*a(n-20) + 3*a(n-21) - a(n-22).
G.f.: x^4*(1+x)*(1 - x + x^2 - x^3 + x^4)*(1 - x + x^2 - x^4 + x^6 - x^7 + x^8)/((1-x)^3 * (1 - x^19)). (End)
EXAMPLE
a(19) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 3 + 3 + 4 + 5 + 6 + 8 + 9 + 10 + 12 + 13 + 15 + 17 + 19 = 128.
MAPLE
seq(round((2*n^3+3*n^2-11*n)/114), n=0..50)
MATHEMATICA
Accumulate[Round[Range[0, 50]^2/19]] (* Harvey P. Dale, Aug 15 2022 *)
PROG
(Magma) [Floor((2*n^3+3*n^2-11*n+42)/114): n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(SageMath)
[(2*n^3 +3*n^2 -11*n +42)//114 for n in range(61)] # G. C. Greubel, Apr 27 2024
CROSSREFS
Sequence in context: A023536 A196126 A024536 * A094281 A076101 A288243
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 10 2010
STATUS
approved