login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177189
Partial sums of round(n^2/16).
1
0, 0, 0, 1, 2, 4, 6, 9, 13, 18, 24, 32, 41, 52, 64, 78, 94, 112, 132, 155, 180, 208, 238, 271, 307, 346, 388, 434, 483, 536, 592, 652, 716, 784, 856, 933, 1014, 1100, 1190, 1285, 1385, 1490, 1600, 1716, 1837, 1964, 2096, 2234, 2378, 2528, 2684
OFFSET
0,5
COMMENTS
The round function is defined here by round(x) = floor(x + 1/2).
There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2, ..., 9, 11, 12, 13, 16, 17, 19, 20, 28, 29, 36, 44).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n + 3)/192).
a(n) = floor((n+3)*(2*n^2 - 3*n + 13)/96).
a(n) = ceiling((n-2)*(2*n^2 + 7*n + 18)/96).
a(n) = round((2*n^3 + 3*n^2 + 4*n)/96).
a(n) = a(n-16) + (n+1)*(n-16) + 94, n > 15.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11) with g.f. x^3*(1 - x + x^2 + x^4 - x^3) / ( (1+x)*(1+x^2)*(1+x^4)*(x-1)^4 ). - R. J. Mathar, Dec 13 2010
EXAMPLE
a(16) = 0 + 0 + 0 + 1 + 1 + 2 + 2 + 3 + 4 + 5 + 6 + 8 + 9 + 11 + 12 + 14 + 16 = 94.
MAPLE
seq(round((2*n^3+3*n^2+4*n)/96), n=0..50)
MATHEMATICA
Accumulate[Round[Range[0, 50]^2/16]] (* Harvey P. Dale, Mar 16 2011 *)
PROG
(Magma) [Floor((n+3)*(2*n^2-3*n+13)/96): n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
CROSSREFS
Sequence in context: A000064 A001305 A088575 * A026906 A164315 A171861
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 10 2010
STATUS
approved