login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177060
a(n) = (7*n+2)*(7*n+5) = 49*n^2 + 49*n + 10.
1
10, 108, 304, 598, 990, 1480, 2068, 2754, 3538, 4420, 5400, 6478, 7654, 8928, 10300, 11770, 13338, 15004, 16768, 18630, 20590, 22648, 24804, 27058, 29410, 31860, 34408, 37054, 39798, 42640, 45580, 48618, 51754, 54988, 58320, 61750, 65278, 68904, 72628, 76450
OFFSET
0,1
COMMENTS
Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 49*A002061(n+1) - 39. - Bruno Berselli, Aug 24 2010
FORMULA
a(n) = 98*n + a(n-1) with a(0) = 10.
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017005(n)*A017041(n).
Sum_{n>=0} 1/a(n) = tan(3*Pi/14)*Pi/21.
Product_{n>=0} (1 - 1/a(n)) = sec(3*Pi/14)*cos(sqrt(13)*Pi/14).
Product_{n>=0} (1 + 1/a(n)) = sec(3*Pi/14)*cos(sqrt(5)*Pi/14). (End)
From Elmo R. Oliveira, Oct 24 2024: (Start)
G.f.: 2*(5 + 39*x + 5*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(10 + 49*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
EXAMPLE
For n=1, a(1) = 98 + 10 = 108.
For n=2, a(2) = 98*2 + 108 = 304.
For n=3, a(3) = 98*3 + 304 = 598.
MATHEMATICA
a[n_] := (7*n + 2)*(7*n + 5); Array[a, 40, 0] (* Amiram Eldar, Feb 19 2023 *)
PROG
(PARI) a(n)=49*n*(n+1)+10 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 31 2010
STATUS
approved