login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176665
Triangle of polynomial coefficients of p(x,n) = Sum_{k=0..n} (k + 1)^n * k! * binomial(x, k), read by rows.
1
1, 1, 2, 1, -5, 9, 1, 109, -165, 64, 1, -3303, 6188, -3494, 625, 1, 169711, -357254, 254434, -74635, 7776, 1, -13084359, 30063342, -24927719, 9549230, -1718079, 117649, 1, 1417404703, -3486909736, 3229823067, -1474126800, 354928391, -43216649, 2097152
OFFSET
0,3
COMMENTS
Row sums are: A083318 = {1, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, ...}.
FORMULA
Let p(x,n) = Sum_{k=0..n} (k + 1)^n * k! * binomial(x, k) then the number triangle is given by T(n, m) = coefficients( p(x,n) ).
EXAMPLE
Triangle begins as:
1;
1, 2;
1, -5, 9;
1, 109, -165, 64;
1, -3303, 6188, -3494, 625;
1, 169711, -357254, 254434, -74635, 7776;
1, -13084359, 30063342, -24927719, 9549230, -1718079, 117649;
MATHEMATICA
(* First program *)
p[x_, n_]:= Sum[(k+1)^n*k!*Binomial[x, k], {k, 0, n}];
Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]//Flatten
(* Second program *)
f[n_]:= CoefficientList[Sum[(k+1)^n*Product[x-j, {j, 0, k-1}], {k, 0, n}], x];
Table[f[n], {n, 0, 10}] (* G. C. Greubel, Feb 07 2021 *)
PROG
(Sage)
def p(n, x): return sum( (k+1)^n*factorial(k)*binomial(x, k) for k in (0..n))
flatten([[( p(n, x) ).series(x, n+1).list()[k] for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 07 2021
CROSSREFS
Cf. A083318.
Sequence in context: A318052 A026078 A349635 * A199050 A306539 A193629
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 23 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 07 2021
STATUS
approved