login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176666
A triangle of polynomial coefficients:p(x,n)=Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}]
0
1, 1, 3, 1, -16, 25, 1, 588, -904, 343, 1, -35108, 65593, -36965, 6561, 1, 3541662, -7450307, 5299298, -1551461, 161051, 1, -539667860, 1239476145, -1027098387, 393094596, -70630574, 4826809, 1, 115929493398, -285126982237, 264011385389
OFFSET
0,3
COMMENTS
Row sums are:A103457;
{1, 4, 10, 28, 82, 244, 730, 2188, 6562, 19684, 59050,...}.
FORMULA
p(x,n)=Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}];
t(n,m)=coefficients(p(x,n))
EXAMPLE
{1},
{1, 3},
{1, -16, 25},
{1, 588, -904, 343},
{1, -35108, 65593, -36965, 6561},
{1, 3541662, -7450307, 5299298, -1551461, 161051},
{ 1, -539667860, 1239476145, -1027098387, 393094596, -70630574, 4826809},
{1, 115929493398, -285126982237, 264011385389, -120438105421, 28978650041, -3525298358, 170859375},
{1, -33405526460804, 86851508060145, -87619801707127, 45402414077950, -13236000326919, 2193188923598, -192758317723, 6975757441},
{1, 12439546100725062, -33876724511327305, 36619991865553925, -20936375400104384, 7018154767854372, -1426322806941012, 172905465804793, -11498169243547, 322687697779},
{1, -5815351979718349460, 16476663041157314889, -18861838035155184791, 11671607490973992658, -4358525114199083475, 1028212770824559839, -154333184246062051, 14292794059654483, -744463577761244, 16679880978201}
MATHEMATICA
Clear[p, x, n]
p[x_, n_] := Sum[(2*k + 1)^n*k!*Binomial[x, k], {k, 0, n}];
Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A123527 A288265 A096611 * A259031 A259686 A350079
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Apr 23 2010
STATUS
approved