login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176566
Triangle T(n, k) = binomial(n*(n+1)/2 + k, k), read by rows.
1
1, 1, 1, 1, 2, 3, 1, 4, 10, 20, 1, 7, 28, 84, 210, 1, 11, 66, 286, 1001, 3003, 1, 16, 136, 816, 3876, 15504, 54264, 1, 22, 253, 2024, 12650, 65780, 296010, 1184040, 1, 29, 435, 4495, 35960, 237336, 1344904, 6724520, 30260340, 1, 37, 703, 9139, 91390, 749398, 5245786, 32224114, 177232627, 886163135
OFFSET
0,5
FORMULA
T(n, k) = binomial(binomial(n, 2) + k, k).
Sum_{k=0..n} T(n, k) = A107868(n).
EXAMPLE
Square array of T(n, k):
1, 1, 1, 1, 1, 1, 1 ...
1, 1, 1, 1, 1, 1, 1 ... A000012;
1, 2, 3, 4, 5, 6, 7 ... A000027;
1, 4, 10, 20, 35, 56, 84 ... A000292;
1, 7, 28, 84, 210, 462, 924 ... A000579;
1, 11, 66, 286, 1001, 3003, 8008 ... A001287;
1, 16, 136, 816, 3876, 15504, 54264 ... A010968;
1, 22, 253, 2024, 12650, 65780, 296010 ... A010974;
Triangle begins as:
1;
1, 1;
1, 2, 3;
1, 4, 10, 20;
1, 7, 28, 84, 210;
1, 11, 66, 286, 1001, 3003;
1, 16, 136, 816, 3876, 15504, 54264;
1, 22, 253, 2024, 12650, 65780, 296010, 1184040;
1, 29, 435, 4495, 35960, 237336, 1344904, 6724520, 30260340;
1, 37, 703, 9139, 91390, 749398, 5245786, 32224114, 177232627, 886163135;
MATHEMATICA
T[n_, k_]= Binomial[Binomial[n, 2] + k, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma) [Binomial(Binomial(n, 2) + k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
(Sage) flatten([[binomial(binomial(n, 2) +k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 09 2021
(PARI) row(n) = vector(n+1, k, k--; binomial(binomial(n, 2) + k, k)); \\ Michel Marcus, Jul 10 2021
CROSSREFS
Cf. A107868 (rows sums), A158498.
Sequence in context: A211233 A084608 A078990 * A079639 A104694 A125182
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Apr 20 2010
STATUS
approved