login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = binomial(n*(n+1)/2 + k, k), read by rows.
1

%I #14 Sep 08 2022 08:45:52

%S 1,1,1,1,2,3,1,4,10,20,1,7,28,84,210,1,11,66,286,1001,3003,1,16,136,

%T 816,3876,15504,54264,1,22,253,2024,12650,65780,296010,1184040,1,29,

%U 435,4495,35960,237336,1344904,6724520,30260340,1,37,703,9139,91390,749398,5245786,32224114,177232627,886163135

%N Triangle T(n, k) = binomial(n*(n+1)/2 + k, k), read by rows.

%H G. C. Greubel, <a href="/A176566/b176566.txt">Rows n = 0..50 of the triangle, flatten</a>

%F T(n, k) = binomial(binomial(n, 2) + k, k).

%F Sum_{k=0..n} T(n, k) = A107868(n).

%e Square array of T(n, k):

%e 1, 1, 1, 1, 1, 1, 1 ...

%e 1, 1, 1, 1, 1, 1, 1 ... A000012;

%e 1, 2, 3, 4, 5, 6, 7 ... A000027;

%e 1, 4, 10, 20, 35, 56, 84 ... A000292;

%e 1, 7, 28, 84, 210, 462, 924 ... A000579;

%e 1, 11, 66, 286, 1001, 3003, 8008 ... A001287;

%e 1, 16, 136, 816, 3876, 15504, 54264 ... A010968;

%e 1, 22, 253, 2024, 12650, 65780, 296010 ... A010974;

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 2, 3;

%e 1, 4, 10, 20;

%e 1, 7, 28, 84, 210;

%e 1, 11, 66, 286, 1001, 3003;

%e 1, 16, 136, 816, 3876, 15504, 54264;

%e 1, 22, 253, 2024, 12650, 65780, 296010, 1184040;

%e 1, 29, 435, 4495, 35960, 237336, 1344904, 6724520, 30260340;

%e 1, 37, 703, 9139, 91390, 749398, 5245786, 32224114, 177232627, 886163135;

%t T[n_, k_]= Binomial[Binomial[n, 2] + k, k];

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten

%o (Magma) [Binomial(Binomial(n, 2) + k, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 09 2021

%o (Sage) flatten([[binomial(binomial(n,2) +k, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jul 09 2021

%o (PARI) row(n) = vector(n+1, k, k--; binomial(binomial(n,2) + k, k)); \\ _Michel Marcus_, Jul 10 2021

%Y Cf. A107868 (rows sums), A158498.

%K nonn,tabl,easy

%O 0,5

%A _Roger L. Bagula_, Apr 20 2010