login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176365
Numerator of (1/Pi)*Integral_{0..infinity} (sin x / x)^(2*n) dx.
2
1, 1, 11, 151, 15619, 655177, 27085381, 2330931341, 12157712239, 37307713155613, 339781108897078469, 75489558096433522049, 11482547005345338463969, 3607856726470666022715979, 18497593486903125823791655511, 520679973964725199436393399689
OFFSET
1,3
COMMENTS
The denominators are given in A176366.
Bisection of A049330. See it for further references.
LINKS
M. R. Darafsheh, Hassan Jolany, An extension of Lobachevsky formula, arXiv:1004.2653 [math.GM], 2010-2017.
FORMULA
a(n) = A049330(2*n).
EXAMPLE
a(2) = 1 because Integral_{0..infinity} (sin(x)/x)^4 dx = (1/3)*Pi.
a(3) = 11 because Integral_{0..infinity} (sin(x)/x)^6 dx = (11/40)*Pi.
a(4) = 151 because Integral_{0..infinity} (sin(x)/x)^8 dx = (151/630)*Pi.
a(5) = 15619 because Integral_{0..infinity} (sin(x)/x)^10 dx = (15619/72576)*Pi.
MAPLE
A176365 := proc(n) sin(x)^(2*n)/x^(2*n) ; int(%, x=0..infinity)/Pi ; numer(%) ; end proc: # R. J. Mathar, Apr 24 2010
MATHEMATICA
a[n_]:= (1/Pi)*Integrate[(Sin[x]/x)^(2n), {x, 0, Infinity}]//Numerator; Array[a, 16] (* Jean-François Alcover, Nov 25 2017 *)
CROSSREFS
Sequence in context: A142083 A205085 A068646 * A077577 A157186 A122769
KEYWORD
frac,nonn
AUTHOR
Jonathan Vos Post, Apr 16 2010
EXTENSIONS
5 terms added and broken URL corrected by R. J. Mathar, Apr 24 2010
Further terms from Max Alekseyev, May 07 2010
STATUS
approved