login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176360
a(n) = quadrant of unit circle corresponding to n radians.
0
1, 2, 2, 3, 4, 4, 1, 2, 2, 3, 4, 4, 1, 1, 2, 3, 3, 4, 1, 1, 2, 3, 3, 4, 4, 1, 2, 2, 3, 4, 4, 1, 2, 2, 3, 3, 4, 1, 1, 2, 3, 3, 4, 1, 1, 2, 2, 3, 4, 4, 1, 2, 2, 3, 4, 4, 1, 1, 2, 3, 3, 4, 1, 1, 2, 3, 3, 4, 4, 1, 2, 2, 3, 4, 4, 1, 2, 2, 3, 3, 4, 1, 1, 2, 3, 3, 4, 1, 1, 2, 2, 3, 4, 4, 1, 2, 2, 3, 4, 4, 1, 1, 2, 3, 3
OFFSET
1,2
COMMENTS
Radians are the natural measure of angle. Quadrants (1 through 4) determine the signs of (x,y); of (cos x, sin x); and are ubiquitous.
Thereby it is "interesting" to consider which quadrant contains successively larger integer radian measure.
FORMULA
a(n) = 1 + {floor [2*n/Pi] modulo(4)}. - Adam Helman, Apr 20 2010
EXAMPLE
a(11) is very nearly 7 quadrants as Pi is nearly exactly 22/7.
Indeed, 11 radians lies just 4.4 milliradian (0.25 degree) within the 4th quadrant.
MATHEMATICA
Table[Mod[1+Floor[(2n)/Pi], 4], {n, 120}]/.(0->4) (* Harvey P. Dale, Apr 09 2020 *)
PROG
From Adam Helman, Apr 20 2010: (Start)
(Other) # a(n) = 1 + {floor [2*n/pi] modulo(4)}
# Ruby code by Andy Martin
# Overkill here, 4 places properly gives first 200 terms.
t = 2000000000000000000000000000000000000000000000000000000000000000000
pi = 3141592653589793238462643383279502884197169399375105820974944592307
(1..200).each{ |n| print "#{1 + ((n*t)/pi)%4}, "}
print "\b \n"
(End)
CROSSREFS
Sequence in context: A071506 A372645 A125920 * A185068 A078664 A328388
KEYWORD
nonn,easy
AUTHOR
Adam Helman, Apr 15 2010, Apr 20 2010
STATUS
approved