

A176359


Numbers with at least three 3s in their prime signature.


2



27000, 74088, 189000, 287496, 297000, 343000, 351000, 370440, 459000, 474552, 513000, 621000, 783000, 814968, 837000, 963144, 999000, 1029000, 1061208, 1107000, 1157625, 1161000, 1259496, 1269000, 1323000, 1331000, 1407672, 1431000, 1437480, 1481544, 1593000, 1647000, 1704024, 1809000, 1852200, 1917000, 1971000, 2012472, 2079000, 2133000, 2148552
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In other words, if the canonical prime factorization of n into prime powers is Product p(i)^e(i), then e(i) = 3 for at least three values of i.


LINKS



EXAMPLE

27000 is a term since 27000 = 2^3 * 3^3 * 5^3.
74088 is a term since 74088 = 2^3 * 5^3 * 7^3.


MATHEMATICA

f[n_]:=Count[Last/@FactorInteger[n], 3]>2; Select[Range[10!], f]


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



