OFFSET
1,1
COMMENTS
Partial sums of numbers n such that binomial(2n,n) is divisible by (n+1)^2. The subsequence of primes in this partial sum begins: 5, 19, 131, 887, 1789, 1997, 3119, 3659, 4889, 6997. The subsequence of primes in this partial sum begins: 196.
FORMULA
a(n) = SUM[i=1..n] A002503(i).
EXAMPLE
a(23) = 5 + 14 + 27 + 41 + 44 + 65 + 76 + 90 + 109 + 125 + 139 + 152 + 155 + 169 + 186 + 189 + 203 + 208 + 209 + 219 + 227 + 230 + 237 = 3119 is prime.
MATHEMATICA
Accumulate[Select[Range[800], Divisible[Binomial[2#, #], (#+1)^2]&]] (* Harvey P. Dale, Apr 18 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 15 2010
EXTENSIONS
Corrected by Harvey P. Dale, Apr 18 2011.
STATUS
approved