login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176078
Triangle, read by rows, T(n, k) = (2*n)!/((n-k)! * k!)^2 - (2*n)!/(n!)^2 + 1.
1
1, 1, 1, 1, 19, 1, 1, 161, 161, 1, 1, 1051, 2451, 1051, 1, 1, 6049, 24949, 24949, 6049, 1, 1, 32341, 206977, 368677, 206977, 32341, 1, 1, 164737, 1510081, 4200769, 4200769, 1510081, 164737, 1, 1, 810811, 10077211, 40347451, 63050131, 40347451, 10077211, 810811, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 21, 324, 4555, 61998, 847315, 11751176, 165521079, 2363418210, 34132747231, ...}.
FORMULA
T(n, k) = (2*n)!/((n-k)! * k!)^2 - (2*n)!/(n!)^2 + 1.
T(n, k) = binomial(2*n,n)*( binomial(n,k)^2 - 1) + 1. - G. C. Greubel, Nov 27 2019
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 19, 1;
1, 161, 161, 1;
1, 1051, 2451, 1051, 1;
1, 6049, 24949, 24949, 6049, 1;
1, 32341, 206977, 368677, 206977, 32341, 1;
1, 164737, 1510081, 4200769, 4200769, 1510081, 164737, 1;
MAPLE
b:=binomial; T(n, k):=b(2*n, n)*(b(n, k)^2 -1)+1; seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 27 2019
MATHEMATICA
T[n_, k_] = (2*n)!/((n-k)!*k!)^2 - (2*n)!/(n!)^2 + 1; Table[T[n, k], {n, 0, 10}, (k, 0, n)]//Flatten
PROG
(PARI) b=binomial; T(n, k) = b(2*n, n)*(b(n, k)^2 -1)+1; \\ G. C. Greubel, Nov 27 2019
(Magma) B:=Binomial; [B(2*n, n)*(B(n, k)^2 -1)+1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 27 2019
(Sage) b=binomial; [[b(2*n, n)*(b(n, k)^2 -1)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 27 2019
(GAP) B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> B(2*n, n)*(B(n, k)^2 -1)+1 ))); # G. C. Greubel, Nov 27 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 08 2010
STATUS
approved