Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:52
%S 1,1,1,1,19,1,1,161,161,1,1,1051,2451,1051,1,1,6049,24949,24949,6049,
%T 1,1,32341,206977,368677,206977,32341,1,1,164737,1510081,4200769,
%U 4200769,1510081,164737,1,1,810811,10077211,40347451,63050131,40347451,10077211,810811,1
%N Triangle, read by rows, T(n, k) = (2*n)!/((n-k)! * k!)^2 - (2*n)!/(n!)^2 + 1.
%C Row sums are: {1, 2, 21, 324, 4555, 61998, 847315, 11751176, 165521079, 2363418210, 34132747231, ...}.
%H G. C. Greubel, <a href="/A176078/b176078.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n, k) = (2*n)!/((n-k)! * k!)^2 - (2*n)!/(n!)^2 + 1.
%F T(n, k) = binomial(2*n,n)*( binomial(n,k)^2 - 1) + 1. - _G. C. Greubel_, Nov 27 2019
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 19, 1;
%e 1, 161, 161, 1;
%e 1, 1051, 2451, 1051, 1;
%e 1, 6049, 24949, 24949, 6049, 1;
%e 1, 32341, 206977, 368677, 206977, 32341, 1;
%e 1, 164737, 1510081, 4200769, 4200769, 1510081, 164737, 1;
%p b:=binomial; T(n,k):=b(2*n,n)*(b(n,k)^2 -1)+1; seq(seq(T(n,k), k=0..n), n=0..10); # _G. C. Greubel_, Nov 27 2019
%t T[n_, k_] = (2*n)!/((n-k)!*k!)^2 - (2*n)!/(n!)^2 + 1; Table[T[n, k], {n, 0, 10}, (k, 0, n)]//Flatten
%o (PARI) b=binomial; T(n,k) = b(2*n,n)*(b(n,k)^2 -1)+1; \\ _G. C. Greubel_, Nov 27 2019
%o (Magma) B:=Binomial; [B(2*n,n)*(B(n,k)^2 -1)+1: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 27 2019
%o (Sage) b=binomial; [[b(2*n,n)*(b(n,k)^2 -1)+1 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 27 2019
%o (GAP) B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> B(2*n,n)*(B(n,k)^2 -1)+1 ))); # _G. C. Greubel_, Nov 27 2019
%Y Cf. A141902, A000984
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Apr 08 2010