login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175732
a(n) = gcd(phi(n), psi(n)).
3
1, 1, 2, 2, 2, 2, 2, 4, 6, 2, 2, 4, 2, 6, 8, 8, 2, 6, 2, 4, 4, 2, 2, 8, 10, 6, 18, 12, 2, 8, 2, 16, 4, 2, 24, 12, 2, 6, 8, 8, 2, 12, 2, 4, 24, 2, 2, 16, 14, 10, 8, 12, 2, 18, 8, 24, 4, 2, 2, 16, 2, 6, 12, 32, 12, 4, 2, 4, 4, 24, 2, 24, 2, 6, 40, 12, 12, 24, 2, 16, 54, 2, 2, 24, 4, 6, 8, 8, 2, 24, 8
OFFSET
1,3
COMMENTS
a(n)^2 divides J_2(n), where J_2 is A007434.
If p > 2 is a prime, a(n) = 2. - Enrique Pérez Herrero, Jan 02 2012
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = gcd(A000010(n), A001615(n)).
a(n) >= (n*2^(omega(n)-1))/rad(n).
a(A002110(n)) = A078558(n). - Enrique Pérez Herrero, Dec 04 2012
For k>=1, a(2^k) = 2^(k-1) and a(p^k) = 2*p^(k-1) if p is an odd prime. - Amiram Eldar, Feb 20 2023
a(3^n) = A025192(n). - Enrique Pérez Herrero, Jun 05 2023
EXAMPLE
a(56) = gcd(phi(56), psi(56)) = gcd(24, 96) = 24.
MATHEMATICA
JordanTotient[n_, k_:1] := DivisorSum[n, #^k * MoebiusMu[n/#] &] /; (n > 0) && IntegerQ[n]; DedekindPsi[n_] := JordanTotient[n, 2]/EulerPhi[n]; A175732[n_] := GCD[EulerPhi[n], DedekindPsi[n]]; Array[A175732, 100]
f1[p_, e_] := (p - 1)*p^(e - 1); f2[p_, e_] := (p + 1)*p^(e - 1); a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, GCD[Times @@ f1 @@@ f, Times @@ f2 @@@ f]]; Array[a, 40] (* Amiram Eldar, Feb 20 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n)); gcd(prod(i = 1, #f~, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)), prod(i = 1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1))); } \\ Amiram Eldar, Feb 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved