login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175332
Numbers whose binary expansion is of the form 11+0*
2
3, 6, 7, 12, 14, 15, 24, 28, 30, 31, 48, 56, 60, 62, 63, 96, 112, 120, 124, 126, 127, 192, 224, 240, 248, 252, 254, 255, 384, 448, 480, 496, 504, 508, 510, 511, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044
OFFSET
1,1
COMMENTS
Also numbers n such that the set (2^j)%n consists only of the powers of two.
FORMULA
Sum_{n>=1} 1/a(n) = -2 + A211705. - Amiram Eldar, Feb 26 2022
PROG
(PARI)
is_11p0s(n)=
{ /* Return whether binary expansion has form 11+0* */
local(b);
if ( n<3, return(0) );
b = binary( n/(2^valuation(n, 2) ) );
if ( #b<2, return(0) );
for (j=1, #b, if(b[j]==0, return(0) ) );
return(1);
}
for (n=1, 2100, if (is_11p0s(n), print1(n, ", ") ) ); /* show terms */
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a175332 n = a175332_list !! (n-1)
a175332_list = f $ singleton 3 where
f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
where z = 2*x; (x, s') = deleteFindMin s
-- Reinhard Zumkeller, Sep 24 2014
(Python)
def a_next(a_n): t = a_n + (a_n & 1); return t | (t >> 1)
a_n = 3; a = []
for i in range(53): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 21 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Joerg Arndt, Apr 12 2010
STATUS
approved