Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 26 2022 04:24:43
%S 3,6,7,12,14,15,24,28,30,31,48,56,60,62,63,96,112,120,124,126,127,192,
%T 224,240,248,252,254,255,384,448,480,496,504,508,510,511,768,896,960,
%U 992,1008,1016,1020,1022,1023,1536,1792,1920,1984,2016,2032,2040,2044
%N Numbers whose binary expansion is of the form 11+0*
%C Also numbers n such that the set (2^j)%n consists only of the powers of two.
%H Reinhard Zumkeller, <a href="/A175332/b175332.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.
%F Sum_{n>=1} 1/a(n) = -2 + A211705. - _Amiram Eldar_, Feb 26 2022
%o (PARI)
%o is_11p0s(n)=
%o { /* Return whether binary expansion has form 11+0* */
%o local(b);
%o if ( n<3, return(0) );
%o b = binary( n/(2^valuation(n,2) ) );
%o if ( #b<2, return(0) );
%o for (j=1,#b, if(b[j]==0, return(0) ) );
%o return(1);
%o }
%o for (n=1,2100, if (is_11p0s(n), print1(n,", ") ) ); /* show terms */
%o (Haskell)
%o import Data.Set (singleton, deleteFindMin, insert)
%o a175332 n = a175332_list !! (n-1)
%o a175332_list = f $ singleton 3 where
%o f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
%o where z = 2*x; (x, s') = deleteFindMin s
%o -- _Reinhard Zumkeller_, Sep 24 2014
%o (Python)
%o def a_next(a_n): t = a_n + (a_n & 1); return t | (t >> 1)
%o a_n = 3; a = []
%o for i in range(53): a.append(a_n); a_n = a_next(a_n) # _Falk Hüffner_, Feb 21 2022
%Y Cf. A023758, A007088, A211705.
%K easy,nonn
%O 1,1
%A _Joerg Arndt_, Apr 12 2010