OFFSET
1,2
COMMENTS
tau(n) is the number of divisors of n (A000005).
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1284
Eric Weisstein's World of Mathematics, Divisor Function.
EXAMPLE
a(2) = 3 because tau(Fibonacci(3)) = tau(2) = 2, tau(Fibonacci(3+2)) = tau(5) = 2.
MAPLE
with(numtheory) ;
with(combinat) ;
A174280 := proc(n)
for k from 1 do
if tau(fibonacci(k)) = tau(fibonacci(n+k)) then
return k;
end if;
end do:
end proc:
seq(A174280(n), n=1..80) ; # R. J. Mathar, Jul 06 2012
MATHEMATICA
Table[k = 1; While[DivisorSigma[0, Fibonacci[k]] != DivisorSigma[0, Fibonacci[k + n]], k++]; k, {n, 100}] (* T. D. Noe, Mar 18 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 15 2010
STATUS
approved