login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest k such that tau(Fibonacci(k)) = tau(Fibonacci(n+k)).
1

%I #28 Oct 12 2024 21:31:14

%S 1,3,4,3,9,5,4,3,4,3,8,5,4,3,19,6,9,5,4,3,10,7,8,5,4,3,14,6,33,13,10,

%T 9,8,13,6,7,18,5,4,3,21,5,4,3,8,16,6,31,10,9,8,9,6,19,6,18,14,27,14,

%U 19,10,9,8,9,6,16,6,26,10,9,8,11,6,42,14,7,20,5,4,3

%N Smallest k such that tau(Fibonacci(k)) = tau(Fibonacci(n+k)).

%C tau(n) is the number of divisors of n (A000005).

%H Chai Wah Wu, <a href="/A174280/b174280.txt">Table of n, a(n) for n = 1..1284</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a>.

%e a(2) = 3 because tau(Fibonacci(3)) = tau(2) = 2, tau(Fibonacci(3+2)) = tau(5) = 2.

%p with(numtheory) ;

%p with(combinat) ;

%p A174280 := proc(n)

%p for k from 1 do

%p if tau(fibonacci(k)) = tau(fibonacci(n+k)) then

%p return k;

%p end if;

%p end do:

%p end proc:

%p seq(A174280(n),n=1..80) ; # _R. J. Mathar_, Jul 06 2012

%t Table[k = 1; While[DivisorSigma[0, Fibonacci[k]] != DivisorSigma[0, Fibonacci[k + n]], k++]; k, {n, 100}] (* _T. D. Noe_, Mar 18 2013 *)

%Y Cf. A063375.

%K nonn

%O 1,2

%A _Michel Lagneau_, Mar 15 2010