login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174273
Inverse Moebius transform of A035263.
3
1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 3, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 2, 4, 2, 3, 4, 2, 4, 6, 2, 2, 4, 4, 2, 4, 2, 4, 6, 2, 2, 6, 3, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 8, 2, 2, 6, 4, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 6, 4, 4, 4, 2, 6, 5, 2, 2, 8, 4, 2, 4, 4, 2, 6, 4, 4, 4, 2, 4, 6, 2, 3, 6, 6, 2, 4, 2, 4, 8
OFFSET
1,3
LINKS
FORMULA
a(1) = 1, a(2n) = -a(n) + A000005(2n), a(2n+1) = sigma(2n+1) (A000203).
Dirichlet g.f.: 2^s*(zeta(s))^2/(2^s+1). - R. J. Mathar, Feb 06 2011
From Amiram Eldar, Nov 13 2022: (Start)
Multiplicative with s(2^e) = e+1-floor((e+1)/2) and a(p^e) = e+1 if p>2.
Sum_{k=1..n} a(k) ~ (2/3)*n*log(n) + (2/3)*(2*gamma - 1 + log(2)/2)*n, where gamma is Euler's constant (A001620). (End)
MATHEMATICA
f[p_, e_] := e + 1 - If[p == 2, Floor[(e + 1)/2], 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2022 *)
PROG
(PARI) A174273(n) = sumdiv(n, d, (valuation(2*d, 2)%2)); \\ Antti Karttunen, Sep 27 2018
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 2]+1-if(f[i, 1] == 2, floor((f[i, 2]+1)/2), 0)); } \\ Amiram Eldar, Nov 13 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ralf Stephan, Nov 27 2010
EXTENSIONS
More terms from Antti Karttunen, Sep 27 2018
STATUS
approved