OFFSET
1,3
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
Dirichlet g.f.: 2^s*(zeta(s))^2/(2^s+1). - R. J. Mathar, Feb 06 2011
From Amiram Eldar, Nov 13 2022: (Start)
Multiplicative with s(2^e) = e+1-floor((e+1)/2) and a(p^e) = e+1 if p>2.
Sum_{k=1..n} a(k) ~ (2/3)*n*log(n) + (2/3)*(2*gamma - 1 + log(2)/2)*n, where gamma is Euler's constant (A001620). (End)
MATHEMATICA
f[p_, e_] := e + 1 - If[p == 2, Floor[(e + 1)/2], 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2022 *)
PROG
(PARI) A174273(n) = sumdiv(n, d, (valuation(2*d, 2)%2)); \\ Antti Karttunen, Sep 27 2018
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 2]+1-if(f[i, 1] == 2, floor((f[i, 2]+1)/2), 0)); } \\ Amiram Eldar, Nov 13 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ralf Stephan, Nov 27 2010
EXTENSIONS
More terms from Antti Karttunen, Sep 27 2018
STATUS
approved