The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174091 OR(n, 2). 1
 2, 3, 2, 3, 6, 7, 6, 7, 10, 11, 10, 11, 14, 15, 14, 15, 18, 19, 18, 19, 22, 23, 22, 23, 26, 27, 26, 27, 30, 31, 30, 31, 34, 35, 34, 35, 38, 39, 38, 39, 42, 43, 42, 43, 46, 47, 46, 47, 50, 51, 50, 51, 54, 55, 54, 55, 58, 59, 58, 59, 62, 63, 62, 63, 66, 67, 66 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS OR(n, 2) + AND(n, 2) = n + 2. OR(n, 2) - AND(n, 2) = n + 2*(-1)^floor(n/2), A004443. a(n) = n when n = 2 or 3 mod 4 (n is in A042964). - Alonso del Arte, Feb 07 2013 REFERENCES Shane Chern, T Cai, H Zhong, On the cardinality and sum of reciprocals of primitive sequences, Preprint 2018; To appear in Adv. Math. (China); https://sites.psu.edu/shanechern/files/2017/12/On-reciprocal-sum-and-cardinality-of-primitive-sequences-2ioz54x.pdf LINKS Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1). FORMULA a(n) = n + 1 + (-1)^floor(n/2). G.f. ( 2-x+x^3 ) / ( (1+x^2)*(x-1)^2 ). - R. J. Mathar, Feb 27 2013 EXAMPLE a(3) = 3 because OR(0011, 0010) = 0011 = 3. a(4) = 6 because OR(0100, 0010) = 0110 = 6. a(5) = 7 because OR(0101, 0010) = 0111 = 7. MAPLE with(Bits): seq(Or(n, 2), n=0..60) MATHEMATICA Table[BitOr[n, 2], {n, 0, 100}] (* Alonso del Arte, Feb 06 2013 *) LinearRecurrence[{2, -2, 2, -1}, {2, 3, 2, 3}, 80] (* Harvey P. Dale, Oct 25 2016 *) PROG (PARI) a(n)=bitor(n, 2) \\ Charles R Greathouse IV, Feb 27 2013 CROSSREFS Cf. similar sequences listed in A244587. Sequence in context: A064895 A120877 A326304 * A318789 A328841 A276008 Adjacent sequences:  A174088 A174089 A174090 * A174092 A174093 A174094 KEYWORD nonn,easy AUTHOR Gary Detlefs, Feb 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 15:30 EST 2020. Contains 332019 sequences. (Running on oeis4.)