



2, 3, 2, 3, 6, 7, 6, 7, 10, 11, 10, 11, 14, 15, 14, 15, 18, 19, 18, 19, 22, 23, 22, 23, 26, 27, 26, 27, 30, 31, 30, 31, 34, 35, 34, 35, 38, 39, 38, 39, 42, 43, 42, 43, 46, 47, 46, 47, 50, 51, 50, 51, 54, 55, 54, 55, 58, 59, 58, 59, 62, 63, 62, 63, 66, 67, 66
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

OR(n, 2) + AND(n, 2) = n + 2.
OR(n, 2)  AND(n, 2) = n + 2*(1)^floor(n/2), A004443.
a(n) = n when n = 2 or 3 mod 4 (n is in A042964).  Alonso del Arte, Feb 07 2013


REFERENCES

Shane Chern, T Cai, H Zhong, On the cardinality and sum of reciprocals of primitive sequences, Preprint 2018; To appear in Adv. Math. (China); https://sites.psu.edu/shanechern/files/2017/12/Onreciprocalsumandcardinalityofprimitivesequences2ioz54x.pdf


LINKS

Table of n, a(n) for n=0..66.
Index entries for linear recurrences with constant coefficients, signature (2,2,2,1).


FORMULA

a(n) = n + 1 + (1)^floor(n/2).
G.f. ( 2x+x^3 ) / ( (1+x^2)*(x1)^2 ).  R. J. Mathar, Feb 27 2013


EXAMPLE

a(3) = 3 because OR(0011, 0010) = 0011 = 3.
a(4) = 6 because OR(0100, 0010) = 0110 = 6.
a(5) = 7 because OR(0101, 0010) = 0111 = 7.


MAPLE

with(Bits): seq(Or(n, 2), n=0..60)


MATHEMATICA

Table[BitOr[n, 2], {n, 0, 100}] (* Alonso del Arte, Feb 06 2013 *)
LinearRecurrence[{2, 2, 2, 1}, {2, 3, 2, 3}, 80] (* Harvey P. Dale, Oct 25 2016 *)


PROG

(PARI) a(n)=bitor(n, 2) \\ Charles R Greathouse IV, Feb 27 2013


CROSSREFS

Cf. similar sequences listed in A244587.
Sequence in context: A064895 A120877 A326304 * A318789 A328841 A276008
Adjacent sequences: A174088 A174089 A174090 * A174092 A174093 A174094


KEYWORD

nonn,easy


AUTHOR

Gary Detlefs, Feb 06 2013


STATUS

approved



