login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173873
a(n) = 2*a(n-1) + 13, a(1)=1.
1
1, 15, 43, 99, 211, 435, 883, 1779, 3571, 7155, 14323, 28659, 57331, 114675, 229363, 458739, 917491, 1834995, 3670003, 7340019, 14680051, 29360115, 58720243, 117440499, 234881011, 469762035, 939524083, 1879048179, 3758096371
OFFSET
1,2
COMMENTS
Prime numbers in this sequence are (43, 211, 883, 3571, 14323, 57331, 234881011, 3758096371, 3848290697203, ... )
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2). - Vincenzo Librandi, Jul 15 2012
G.f.: x*(1+12*x)/(1 - 3*x + 2*x^2). - Vincenzo Librandi, Jul 15 2012
a(n) = 7*2^n-13. - Fabio Visonà, Apr 08 2022
EXAMPLE
a(2) = 2*1 + 13 = 15;
a(3) = 2*15 + 13 = 43;
a(4) = 2*43 + 13 = 99.
MATHEMATICA
RecurrenceTable[{a[1]==1, a[n]==2*a[n-1]+13}, a, {n, 40}] (* Vincenzo Librandi, Jul 15 2012 *)
LinearRecurrence[{3, -2}, {1, 15}, 30] (* Harvey P. Dale, Aug 26 2019 *)
PROG
(Magma) I:=[1]; [n le 1 select I[n] else 2*Self(n-1)+13: n in [1..30]]; // Vincenzo Librandi, Jul 15 2012
CROSSREFS
Sequence in context: A072119 A069127 A137183 * A124708 A204734 A126369
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 06 2010
STATUS
approved