login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173874
Primes in A173836.
1
29, 41, 101, 173, 191, 197, 383, 1019, 1049, 1091, 1163, 1409, 1481, 1613, 1637, 1721, 1823, 1913, 1973, 2027, 2099, 2243, 2339, 2351, 2447, 2729, 2837, 2897, 2999, 3023, 3089, 3137, 3167, 3203, 3251, 3407, 3881, 4019, 4349, 4397, 4451, 4457
OFFSET
1,1
COMMENTS
For a prime p and its k-digit cube p^3 we need to check if q = 11^3 * 10^k + p^3 is a prime.
11^3*10^k is congruent to 2 (mod 3), so p^3 must be congruent to 2 (mod 3) because otherwise the sum q cannot become a prime.
In turn, all p in the sequence are also congruent to 2 (mod 3) (see A003627).
REFERENCES
K. Haase and P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985
LINKS
EXAMPLE
The prime 29 is in the sequence because 29^3=24389, and the concatenation 133124389=prime(7545294) is a prime number.
MAPLE
cat2 := proc(a, b) ndgs := max(1, ilog10(b)+1) ; a*10^ndgs+b ; end proc:
for i from 1 to 800 do p := ithprime(i) ; if isprime(cat2(1331, p^3)) then printf("%d, ", p) ; end if; end do: # R. J. Mathar, Mar 26 2010
MATHEMATICA
Select[Prime[Range[2000]], PrimeQ[FromDigits[Join[{1, 3, 3, 1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 14 2011 *)
KEYWORD
base,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 01 2010
EXTENSIONS
Definition simplified, missing numbers 2243, 2339 etc. inserted, numbers like 2621, 2693 removed - R. J. Mathar, Mar 26 2010
STATUS
approved