login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*a(n-1) + 13, a(1)=1.
1

%I #21 Sep 08 2022 08:45:50

%S 1,15,43,99,211,435,883,1779,3571,7155,14323,28659,57331,114675,

%T 229363,458739,917491,1834995,3670003,7340019,14680051,29360115,

%U 58720243,117440499,234881011,469762035,939524083,1879048179,3758096371

%N a(n) = 2*a(n-1) + 13, a(1)=1.

%C Prime numbers in this sequence are (43, 211, 883, 3571, 14323, 57331, 234881011, 3758096371, 3848290697203, ... )

%H Vincenzo Librandi, <a href="/A173873/b173873.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F a(n) = 3*a(n-1) - 2*a(n-2). - _Vincenzo Librandi_, Jul 15 2012

%F G.f.: x*(1+12*x)/(1 - 3*x + 2*x^2). - _Vincenzo Librandi_, Jul 15 2012

%F a(n) = 7*2^n-13. - _Fabio Visonà_, Apr 08 2022

%e a(2) = 2*1 + 13 = 15;

%e a(3) = 2*15 + 13 = 43;

%e a(4) = 2*43 + 13 = 99.

%t RecurrenceTable[{a[1]==1,a[n]==2*a[n-1]+13},a,{n,40}] (* _Vincenzo Librandi_, Jul 15 2012 *)

%t LinearRecurrence[{3,-2},{1,15},30] (* _Harvey P. Dale_, Aug 26 2019 *)

%o (Magma) I:=[1]; [n le 1 select I[n] else 2*Self(n-1)+13: n in [1..30]]; // _Vincenzo Librandi_, Jul 15 2012

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Mar 06 2010