Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Aug 26 2024 05:00:13
%S 0,2,0,5,3,8,2,11,6,14,0,17,9,20,5,23,12,26,3,29,15,32,8,35,18,38,2,
%T 41,21,44,11,47,24,50,6,53,27,56,14,59,30,62,0,65,33,68,17,71,36,74,9,
%U 77,39,80,20,83,42,86,5,89,45,92,23,95,48,98,12,101,51,104,26,107,54,110,3
%N a(n) = (A016957(n)/2^A007814(A016957(n)) - 1)/2, with A016957(n) = 6*n+4 and A007814(n) the 2-adic valuation of n.
%C All positive integers eventually reach 1 in the Collatz problem iff all nonnegative integers eventually reach 0 with repeated application of this map, i.e., if for all n, the sequence n, a(n), a(a(n)), a(a(a(n))), ... eventually hits 0.
%C 0 <= a(n) <= (3n+1)/2, with the upper bound being achieved for all odd n.
%C The positions of the zeros are given by A020988 = (2/3)*(4^n-1). This is because if n = (2/3)*(4^k-1), then m = 2n+1 = (1/3)*(4^(k+1)-1), and 3m+1 = 4^(k+1) is a power of 4. - _Howard A. Landman_, Mar 14 2010
%C Subsequence of A025480, a(n) = A025480(3n+1), i.e., A025480 = 0,[0],1,0,[2],1,3,[0],4,2,[5],1,6,[3],7,0,[8],4,9,[2],10,5,[11],1,12,[6],13,3,[14],... with elements of A173732 in brackets. - Paul Tarau, Mar 21 2010
%C A204418(a(n)) = 1. - _Reinhard Zumkeller_, Apr 29 2012
%C Original name: "A compression of the Collatz (or 3x+1) sequence considered as a map from odd numbers to odd numbers." - _Michael De Vlieger_, Oct 07 2019
%H Reinhard Zumkeller, <a href="/A173732/b173732.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics,<a href="http://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Collatz_conjecture">Collatz conjecture</a>.
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>.
%F From _Amiram Eldar_, Aug 26 2024: (Start)
%F a(n) = (A075677(n+1) - 1)/2.
%F Sum_{k=1..n} a(k) ~ n^2 / 2. (End)
%e a(0) = 0 because 2n+1 = 1 (the first odd number), 3*1 + 1 = 4, dividing all powers of 2 out of 4 leaves 1, and (1-1)/2 = 0.
%e a(1) = 2 because 2n+1 = 3, 3*3 + 1 = 10, dividing all powers of 2 out of 10 leaves 5, and (5-1)/2 = 2.
%t Array[(#/2^IntegerExponent[#, 2] - 1)/2 &[6 # + 4] &, 75, 0] (* _Michael De Vlieger_, Oct 06 2019 *)
%o (C) #include <stdio.h> main() { int k,m,n; for (k = 0; ; k++) { n = 2*k + 1 ; m = 3*n + 1 ; while (!(m & 1)) { m >>= 1 ; } printf("%d,",((m - 1) >> 1)); } }
%o (Haskell)
%o a173732 n = a173732_list !! n
%o a173732_list = f $ tail a025480_list where f (x : _ : _ : xs) = x : f xs
%o -- _Reinhard Zumkeller_, Apr 29 2012
%o (PARI) odd(n) = n >> valuation(n, 2);
%o a(n) = (odd(6*n+4) - 1)/2; \\ _Amiram Eldar_, Aug 26 2024
%Y Cf. A006370, A007494 (range), A007814, A016957, A020988, A025480, A075677.
%K easy,nonn
%O 0,2
%A _Howard A. Landman_, Feb 22 2010
%E Name changed by _Michael De Vlieger_, Oct 07 2019